scholarly journals Corticofugal modulation of peripheral auditory responses

Author(s):  
Gonzalo Terreros ◽  
Paul H. Delano
2000 ◽  
Vol 84 (6) ◽  
pp. 3083-3087 ◽  
Author(s):  
Xiaoming Zhou ◽  
Philip H.-S. Jen

Recent studies show that the auditory corticofugal system modulates and improves ongoing signal processing and reorganizes frequency map according to auditory experience in the central nucleus of bat inferior colliculus. However, whether all corticofugally affected collicular neurons are involved in both types of modulation has not been determined. In this study, we demonstrate that one group (51%) of collicular neurons participates only in corticofugal modulation of ongoing signal processing, while a second group (49%) of collicular neurons participates in both modulation of ongoing signal processing and in reorganization of the auditory system.


2004 ◽  
Author(s):  
V. Bagaev ◽  
S. Panteleev ◽  
I. P. Pavlov

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Jannath Begum-Ali ◽  
◽  
Anna Kolesnik-Taylor ◽  
Isabel Quiroz ◽  
Luke Mason ◽  
...  

Abstract Background Sensory modulation difficulties are common in children with conditions such as Autism Spectrum Disorder (ASD) and could contribute to other social and non-social symptoms. Positing a causal role for sensory processing differences requires observing atypical sensory reactivity prior to the emergence of other symptoms, which can be achieved through prospective studies. Methods In this longitudinal study, we examined auditory repetition suppression and change detection at 5 and 10 months in infants with and without Neurofibromatosis Type 1 (NF1), a condition associated with higher likelihood of developing ASD. Results In typically developing infants, suppression to vowel repetition and enhanced responses to vowel/pitch change decreased with age over posterior regions, becoming more frontally specific; age-related change was diminished in the NF1 group. Whilst both groups detected changes in vowel and pitch, the NF1 group were largely slower to show a differentiated neural response. Auditory responses did not relate to later language, but were related to later ASD traits. Conclusions These findings represent the first demonstration of atypical brain responses to sounds in infants with NF1 and suggest they may relate to the likelihood of later ASD.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Michael Lohse ◽  
Johannes C. Dahmen ◽  
Victoria M. Bajo ◽  
Andrew J. King

AbstractIntegration of information across the senses is critical for perception and is a common property of neurons in the cerebral cortex, where it is thought to arise primarily from corticocortical connections. Much less is known about the role of subcortical circuits in shaping the multisensory properties of cortical neurons. We show that stimulation of the whiskers causes widespread suppression of sound-evoked activity in mouse primary auditory cortex (A1). This suppression depends on the primary somatosensory cortex (S1), and is implemented through a descending circuit that links S1, via the auditory midbrain, with thalamic neurons that project to A1. Furthermore, a direct pathway from S1 has a facilitatory effect on auditory responses in higher-order thalamic nuclei that project to other brain areas. Crossmodal corticofugal projections to the auditory midbrain and thalamus therefore play a pivotal role in integrating multisensory signals and in enabling communication between different sensory cortical areas.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Koya Yamashiro ◽  
Yudai Yamazaki ◽  
Kanako Siiya ◽  
Koyuki Ikarashi ◽  
Yasuhiro Baba ◽  
...  

AbstractLong-term skills training is known to induce neuroplastic alterations, but it is still debated whether these changes are always modality-specific or can be supramodal components. To address this issue, we compared finger-targeted somatosensory-evoked and auditory-evoked potentials under both Go (response) and Nogo (response inhibition) conditions between 10 baseball players, who require fine hand/digit skills and response inhibition, to 12 matched track and field (T&F) athletes. Electroencephalograms were obtained at nine cortical electrode positions. Go potentials, Nogo potentials, and Go/Nogo reaction time (Go/Nogo RT) were measured during equiprobable somatosensory and auditory Go/Nogo paradigms. Nogo potentials were obtained by subtracting Go trial from Nogo trial responses. Somatosensory Go P100 latency and Go/Nogo RT were significantly shorter in the baseball group than the T&F group, while auditory Go N100 latency and Go/Nogo RT did not differ between groups. Additionally, somatosensory subtracted Nogo N2 latency was significantly shorter in the baseball group than the T&F group. Furthermore, there were significant positive correlations between somatosensory Go/Nogo RT and both Go P100 latency and subtracted Nogo N2 latency, but no significant correlations among auditory responses. We speculate that long-term skills training induce predominantly modality-specific neuroplastic changes that can improve both execution and response inhibition.


1994 ◽  
Vol 19 (3) ◽  
pp. 171
Author(s):  
S. Dietrich ◽  
S. Barry ◽  
D. Parker

1998 ◽  
Vol 5 ◽  
pp. 203
Author(s):  
Ümmühan Isoglu-Alkaç ◽  
Sacit Karamürsel

Sign in / Sign up

Export Citation Format

Share Document