Differentiating Transcranial Magnetic Stimulation Cortical and Auditory Responses via Single Pulse and Paired Pulse protocols: A TMS-EEG study

Author(s):  
Mohsen Poorganji ◽  
Reza Zomorrodi ◽  
Colin Hawco ◽  
Aron T. Hill ◽  
Itay Hadas ◽  
...  
2001 ◽  
Vol 85 (6) ◽  
pp. 2624-2629 ◽  
Author(s):  
A. P. Strafella ◽  
T. Paus

Positron emission tomography (PET) was used to assess changes in regional cerebral blood flow (CBF) induced by paired-pulse transcranial magnetic stimulation (TMS) of primary motor cortex (M1). The study was performed in eight normal volunteers using two Magstim-200 stimulators linked with a Bistim module. A circular TMS coil was held in the scanner by a mechanical arm and located over the left M1. Surface electrodes were used to record motor evoked potentials (MEPs) from the contralateral first dorsal interosseous muscle (FDI). Cortical excitability was evaluated in the relaxed FDI using a paired conditioning-test stimulus paradigm with two interstimulus intervals (ISIs): 3 and 12 ms. The subjects were scanned three times during each of the following four conditions: 1) baseline with no TMS (BASE); 2) single-pulse TMS (TMSsing); 3) 3-ms paired-pulse TMS (TMS3); and 4) 12-ms paired-pulse TMS (TMS12). CBF and peak-to-peak MEP amplitudes were measured over each 60-s scanning period. To assess TMS-induced changes in CBF, a t-statistic map was generated by first subtracting the single-pulse TMS condition from the 3- and 12-ms paired-pulse TMS conditions and then correlating the CBF differences, respectively, with the amount of suppression and facilitation of the EMG responses. A significant positive correlation was observed between the CBF difference (TMS3-TMSsing) and the amount of suppression of EMG response, as well as between the CBF difference (TMS12-TMSsing) and the amount of facilitation of EMG response. This positive correlation was observed in the left M1, left lateral premotor cortex, and right M1 in the case of 3-ms paired-pulse TMS, but only in the left M1 in the case of 12-ms paired-pulse TMS. The above pattern of CBF response to paired-pulse TMS supports the possibility that suppression and facilitation of the EMG response are mediated by different populations of cortical interneurons.


2019 ◽  
Author(s):  
Mana Biabani ◽  
Alex Fornito ◽  
James P. Coxon ◽  
Ben D. Fulcher ◽  
Nigel C. Rogasch

AbstractTranscranial magnetic stimulation (TMS) is a powerful tool to investigate cortical circuits. Changes in cortical excitability following TMS are typically assessed by measuring changes in either conditioned motor-evoked potentials (MEPs) following paired-pulse TMS over motor cortex or evoked potentials measured with electroencephalography following single-pulse TMS (TEPs). However, it is unclear whether these two measures of cortical excitability index the same cortical response. Twenty-four healthy participants received local and interhemispheric paired-pulse TMS over motor cortex with eight inter-pulse intervals, suband suprathreshold conditioning intensities, and two different pulse waveforms, while MEPs were recorded from a hand muscle. TEPs were also recorded in response to single-pulse TMS using the conditioning pulse alone. The relationships between TEPs and conditioned-MEPs were evaluated using metrics sensitive to both their magnitude at each timepoint and their overall shape across time. The impacts of undesired sensory potentials resulting from TMS pulse and muscle contractions were also assessed on both measures. Both conditioned-MEPs and TEPs were sensitive to re-afferent somatosensory activity following motor-evoked responses, but over different post-stimulus timepoints. Moreover, the amplitude of low-frequency oscillations in TEPs was strongly correlated with the sensory potentials, whereas early and local high-frequency responses showed minimal relationships. Accordingly, conditioned-MEPs did not correlate with TEPs in the time domain but showed high shape similarity with the amplitude of high-frequency oscillations in TEPs. Therefore, despite the effects of sensory confounds, the TEP and MEP measures share a response component, suggesting that they index a similar cortical response and perhaps the same neuronal populations.


2012 ◽  
Vol 107 (3) ◽  
pp. 966-972 ◽  
Author(s):  
Tsung-Hsun Hsieh ◽  
Sameer C. Dhamne ◽  
Jia-Jin J. Chen ◽  
Alvaro Pascual-Leone ◽  
Frances E. Jensen ◽  
...  

Paired-pulse transcranial magnetic stimulation (ppTMS) is a safe and noninvasive tool for measuring cortical inhibition in humans, particularly in patients with disorders of cortical inhibition such as epilepsy. However, ppTMS protocols in rodent disease models, where mechanistic insight into the ppTMS physiology and into disease processes may be obtained, have been limited due to the requirement for anesthesia and needle electromyography. To eliminate the confounding factor of anesthesia and to approximate human ppTMS protocols in awake rats, we adapted the mechanomyogram (MMG) method to investigate the ppTMS inhibitory phenomenon in awake rats and then applied differential pharmacology to test the hypothesis that long-interval cortical inhibition is mediated by the GABAA receptor. Bilateral hindlimb-evoked MMGs were elicited in awake rats by long-interval ppTMS protocols with 50-, 100-, and 200-ms interstimulus intervals. Acute changes in ppTMS-MMG were measured before and after intraperitoneal injections of saline, the GABAA agonist pentobarbital (PB), and GABAA antagonist pentylenetetrazole (PTZ). An evoked MMG was obtained in 100% of animals by single-pulse stimulation, and ppTMS resulted in predictable inhibition of the test-evoked MMG. With increasing TMS intensity, MMG amplitudes increased in proportion to machine output to produce reliable input-output curves. Simultaneous recordings of electromyography and MMG showed a predictable latency discrepancy between the motor-evoked potential and the evoked MMG (7.55 ± 0.08 and 9.16 ± 0.14 ms, respectively). With pharmacological testing, time course observations showed that ppTMS-MMG inhibition was acutely reduced following PTZ ( P < 0.05), acutely enhanced after PB ( P < 0.01) injection, and then recovered to pretreatment baseline after 1 h. Our data support the application of the ppTMS-MMG technique for measuring the cortical excitability in awake rats and provide the evidence that GABAA receptor contributes to long-interval paired-pulse cortical inhibition. Thus ppTMS-MMG appears a well-tolerated biomarker for measuring GABAA-mediated cortical inhibition in rats.


2010 ◽  
Vol 104 (3) ◽  
pp. 1392-1400 ◽  
Author(s):  
Oscar Soto ◽  
Josep Valls-Solé ◽  
Hatice Kumru

Motor preparation for execution of both simple and choice reaction time tasks (SRT and CRT) involves enhancement of corticospinal excitability (CE). However, motor preparation also implies changes in inhibitory control that have thus far been much less studied. Short-interval intracortical inhibition (SICI) has been shown to decrease before CE increases. Therefore we reasoned that, if SICI contributes to inhibitory control of voluntary movement during the preparatory phase, it would be larger in CRT than in SRT because of the need to keep the movement unreleased until the uncertainty resolves on which task is required. We measured changes in SICI and in CE at different time points preceding motor reaction in normal subjects. Single-pulse transcranial magnetic stimulation (spTMS) and paired-pulse transcranial magnetic stimulation (ppTMS) produced time-dependent changes in both SRT and CRT, with shortening when applied close to the presentation of the imperative signal (“early”) and lengthening when applied near the expected reaction (“late”). In addition, at all stimulation time points, reaction time was shorter with ppTMS than that with spTMS, but there was no consistent association between the amount of SICI and reaction time changes. At early stimulation time points, CE was reduced in CRT but not in SRT. However, SICI in CRT was not different from SICI in SRT. At late stimulation time points, SICI decreased just before enhancement of CE. Our findings indicate that inhibitory circuits other than SICI are responsible for setting the level of CE at earlier parts of the reaction time period. Although the decrease in SICI may contribute to the increase in CE at the last part of the premotor period, the two phenomena are not dependent on each other.


Author(s):  
Anssam Bassem Mohy ◽  
Aqeel Kareem Hatem ◽  
Hussein Ghani Kadoori ◽  
Farqad Bader Hamdan

Abstract Background Transcranial magnetic stimulation (TMS) is a non-invasive procedure used in a small targeted region of the brain via electromagnetic induction and used diagnostically to measure the connection between the central nervous system (CNS) and skeletal muscle to evaluate the damage that occurs in MS. Objectives The study aims to investigate whether single-pulse TMS measures differ between patients with MS and healthy controls and to consider if these measures are associated with clinical disability. Patients and methods Single-pulse TMS was performed in 26 patients with MS who hand an Expanded Disability Status Scale (EDSS) score between 0 and 9.5 and in 26 normal subjects. Different TMS parameters from upper and lower limbs were investigated. Results TMS disclosed no difference in all MEP parameters between the right and left side of the upper and lower limbs in patients with MS and controls. In all patients, TMS parameters were different from the control group. Upper limb central motor conduction time (CMCT) was prolonged in MS patients with pyramidal signs. Upper and lower limb CMCT and CMCT-f wave (CMCT-f) were prolonged in patients with ataxia. Moreover, CMCT and CMCT-f were prolonged in MS patients with EDSS of 5–9.5 as compared to those with a score of 0–4.5. EDSS correlated with upper and lower limb cortical latency (CL), CMCT, and CMCT-f whereas motor evoked potential (MEP) amplitude not. Conclusion TMS yields objective data to evaluate clinical disability and its parameters correlated well with EDSS.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Domenica Veniero ◽  
Joachim Gross ◽  
Stephanie Morand ◽  
Felix Duecker ◽  
Alexander T. Sack ◽  
...  

AbstractVoluntary allocation of visual attention is controlled by top-down signals generated within the Frontal Eye Fields (FEFs) that can change the excitability of lower-level visual areas. However, the mechanism through which this control is achieved remains elusive. Here, we emulated the generation of an attentional signal using single-pulse transcranial magnetic stimulation to activate the FEFs and tracked its consequences over the visual cortex. First, we documented changes to brain oscillations using electroencephalography and found evidence for a phase reset over occipital sites at beta frequency. We then probed for perceptual consequences of this top-down triggered phase reset and assessed its anatomical specificity. We show that FEF activation leads to cyclic modulation of visual perception and extrastriate but not primary visual cortex excitability, again at beta frequency. We conclude that top-down signals originating in FEF causally shape visual cortex activity and perception through mechanisms of oscillatory realignment.


2021 ◽  
Vol 11 (1) ◽  
pp. 54
Author(s):  
Yoshihiro Noda ◽  
Mera S. Barr ◽  
Reza Zomorrodi ◽  
Robin F. H. Cash ◽  
Pantelis Lioumis ◽  
...  

Background: The combination of transcranial magnetic stimulation (TMS) with electroencephalography (EEG) allows for non-invasive investigation of cortical response and connectivity in human cortex. This study aimed to examine the amplitudes and latencies of each TMS-evoked potential (TEP) component induced by single-pulse TMS (spTMS) to the left motor (M1) and dorsolateral prefrontal cortex (DLPFC) among healthy young participants (YNG), older participants (OLD), and patients with schizophrenia (SCZ). Methods: We compared the spatiotemporal characteristics of TEPs induced by spTMS among the groups. Results: Compared to YNG, M1-spTMS induced lower amplitudes of N45 and P180 in OLD and a lower amplitude of P180 in SCZ, whereas the DLPFC-spTMS induced a lower N45 in OLD. Further, OLD demonstrated latency delays in P60 after M1-spTMS and in N45-P60 over the right central region after left DLPFC-spTMS, whereas SCZ demonstrated latency delays in N45-P60 over the midline and right central regions after DLPFC-spTMS. Conclusions: These findings suggest that inhibitory and excitatory mechanisms mediating TEPs may be altered in OLD and SCZ. The amplitude and latency changes of TEPs with spTMS may reflect underlying neurophysiological changes in OLD and SCZ, respectively. The spTMS administered to M1 and the DLPFC can probe cortical functions by examining TEPs. Thus, TMS-EEG can be used to study changes in cortical connectivity and signal propagation from healthy to pathological brains.


Sign in / Sign up

Export Citation Format

Share Document