scholarly journals Enhancing the Screening Efficiency of Breast Cancer by Combining Conventional Medical Imaging Examinations With Circulating Tumor Cells

2021 ◽  
Vol 11 ◽  
Author(s):  
Yang Gao ◽  
Wan-Hung Fan ◽  
Chaohui Duan ◽  
Wenhe Zhao ◽  
Jun Zhang ◽  
...  

PurposeUltrasound (US) and mammogram (MMG) are the two most common breast cancer (BC) screening tools. This study aimed to assess how the combination of circulating tumor cells (CTC) with US and MMG would improve the diagnostic performance.MethodsCTC detection and imaging examinations, US and MMG, were performed in 238 treatment-naive BC patients, 217 patients with benign breast diseases (BBD), and 20 healthy females. Correlations of CTC, US and MMG with patients’ clinicopathological characteristics were evaluated. Diagnostic performances of CTC, US and MMG were estimated by the receiver operating characteristic curves.ResultsCTC, US and MMG could all distinguish BC patients from the control (p < 0.0001). Area under curve (AUC) of CTC, US and MMG are 0.855, 0.861 and 0.759, respectively. While US has the highest sensitivity of 0.79, CTC and MMG have the same specificity of 0.92. Notably, CTC has the highest accuracy of 0.83. Combination with CTC increases the AUC of US and MMG to 0.922 and 0.899, respectively. Combining MMG with CTC or US increases the sensitivity of MMG to 0.87, however “CTC + MMG” has a higher specificity of 0.85. “CTC + US” performs the best in BC diagnosis, followed by “CTC + MMG” and then “US + MMG”.ConclusionCTC can be used as a diagnostic aid for BC screening. Combination with CTC increases the diagnostic potency of conventional BC screening imaging examinations, US and MMG, in BC diagnosis, especially for MMG.

2020 ◽  
Author(s):  
Xuan Shao ◽  
xiao yan jin ◽  
zhi gang chen ◽  
zhi gang zhang ◽  
ke wang ◽  
...  

Abstract Background: Previous study has reported that circulating tumor cells (CTCs) could be served as a diagnostic biomarker in breast cancer (BC) screening. However, the differential efficacy of routine examination including ultrasound (US), mammogram (MG), magnetic resonance imaging (MR), and breast-specific gamma imaging (BSGI) and CTCs is unknown. This study aimed to compare CTCs with common used BC screening imaging modalities and to evaluate whether their combination would enhance the diagnostic potency in non-metastatic BC patients.Methods: 102 treatment-naive non-metastatic BC patients, 177 patients with breast benign diseases (BBD) and 64 healthy females, who had CTC detection and at least one of the following medical imaging examinations, US, MG or MR between December 2017 and November 2018, were enrolled in this study.Correlations of CTC enumeration with patients’ clinicopathological characteristics and medical imaging examinations were evaluated. Results: CTC detection rates (average CTC counts) in stage I-III BC patients were 92.9% (2.1), 87.2% (2.4) and 100% (4.2), respectively. CTCs counts were positively associated with cancer stage (p = 0.0084) and tumor size (p = 0.0301). CTC counts were more correlated with US than MR or MG. CTC counts were not associated with molecular subtypes of BC nor breast-specific gamma imaging (BSGI) results, indicating that CTC enumeration cannot be used to predict molecular signatures of BC. CTCs and medical imaging examinations would have the best diagnostic performance for BC when CTC cut-off was set to 2 and imaging Breast Imaging-Reporting and Data System (BI-RADS) was set to 4b. Combination of CTC with US, MG or MR increased the sensitivity for BC diagnosis, especially for MG. Sensitivity of MG increased from 0.694 to 0.917, even more than in conjugation with US (0.901). Conclusion: CTCs counts can be used as a diagnostic aid in BC screening and early diagnosis. CTCs counts were more relevant to US than MR or MG. Conjugation of CTCs counts would improve the diagnostic potency of medical imaging examinations for diagnosing BC, especially for MG in Chinese women.


2014 ◽  
Vol 74 (S 01) ◽  
Author(s):  
M Wallwiener ◽  
AD Hartkopf ◽  
S Riethdorf ◽  
J Nees ◽  
FA Taran ◽  
...  

2015 ◽  
Vol 75 (08) ◽  
Author(s):  
H Schneck ◽  
B Gierke ◽  
M Pawlak ◽  
M Templin ◽  
T Fehm ◽  
...  

2001 ◽  
Vol 6 (2) ◽  
pp. 79-91 ◽  
Author(s):  
RAYMOND L. HOUGHTON ◽  
DAVIN C. DILLON ◽  
DAVID A. MOLESH ◽  
BARBARA K. ZEHENTNER ◽  
JIANGCHUN XU ◽  
...  

Cancers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1119
Author(s):  
Ivonne Nel ◽  
Erik W. Morawetz ◽  
Dimitrij Tschodu ◽  
Josef A. Käs ◽  
Bahriye Aktas

Circulating tumor cells (CTCs) are a potential predictive surrogate marker for disease monitoring. Due to the sparse knowledge about their phenotype and its changes during cancer progression and treatment response, CTC isolation remains challenging. Here we focused on the mechanical characterization of circulating non-hematopoietic cells from breast cancer patients to evaluate its utility for CTC detection. For proof of premise, we used healthy peripheral blood mononuclear cells (PBMCs), human MDA-MB 231 breast cancer cells and human HL-60 leukemia cells to create a CTC model system. For translational experiments CD45 negative cells—possible CTCs—were isolated from blood samples of patients with mamma carcinoma. Cells were mechanically characterized in the optical stretcher (OS). Active and passive cell mechanical data were related with physiological descriptors by a random forest (RF) classifier to identify cell type specific properties. Cancer cells were well distinguishable from PBMC in cell line tests. Analysis of clinical samples revealed that in PBMC the elliptic deformation was significantly increased compared to non-hematopoietic cells. Interestingly, non-hematopoietic cells showed significantly higher shape restoration. Based on Kelvin–Voigt modeling, the RF algorithm revealed that elliptic deformation and shape restoration were crucial parameters and that the OS discriminated non-hematopoietic cells from PBMC with an accuracy of 0.69, a sensitivity of 0.74, and specificity of 0.63. The CD45 negative cell population in the blood of breast cancer patients is mechanically distinguishable from healthy PBMC. Together with cell morphology, the mechanical fingerprint might be an appropriate tool for marker-free CTC detection.


Sign in / Sign up

Export Citation Format

Share Document