scholarly journals Induced Pluripotent Stem Cells Inhibit Bleomycin-Induced Pulmonary Fibrosis in Mice through Suppressing TGF-β1/Smad-Mediated Epithelial to Mesenchymal Transition

2016 ◽  
Vol 7 ◽  
Author(s):  
Yan Zhou ◽  
Zhong He ◽  
Yuan Gao ◽  
Rui Zheng ◽  
Xiaoye Zhang ◽  
...  
2020 ◽  
Author(s):  
Katherine A. Wood ◽  
Charlie F. Rowlands ◽  
Huw B. Thomas ◽  
Steven Woods ◽  
Julieta O’Flaherty ◽  
...  

ABSTRACTThe craniofacial developmental disorder Burn-McKeown Syndrome (BMKS) is caused by biallelic variants in the pre-messenger RNA splicing factor gene TXNL4A/DIB1. The majority of affected individuals with BMKS have a 34 base pair deletion in the promoter region of one allele of TXNL4A combined with a loss-of-function variant on the other allele, resulting in reduced TXNL4A expression. However, it is unclear how reduced expression of this ubiquitously expressed spliceosome protein results in craniofacial defects during development. Here we reprogrammed peripheral mononuclear blood cells from a BMKS patient and her unaffected mother into induced pluripotent stem cells (iPSCs) and differentiated the iPSCs into induced neural crest cells (iNCCs), the key cell type required for correct craniofacial development. BMKS patient-derived iPSCs proliferated more slowly than both mother- and unrelated control-derived iPSCs, and RNA-Seq analysis revealed significant differences in gene expression and alternative splicing. Patient iPSCs displayed defective differentiation into iNCCs compared to maternal and unrelated control iPSCs, in particular a delay in undergoing an epithelial-to-mesenchymal transition (EMT). RNA-Seq analysis of differentiated iNCCs revealed widespread gene expression changes and mis-splicing in genes relevant to craniofacial and embryonic development that highlight a dampened response to WNT signalling, the key pathway activated during iNCC differentiation. Furthermore, we identified the mis-splicing of TCF7L2 exon 4, a key gene in the WNT pathway, as a potential cause of the downregulated WNT response in patient cells. Additionally, mis-spliced genes shared common sequence properties such as length, splice site strengths and sequence motifs, suggesting that splicing of particular subsets of genes is particularly sensitive to changes in TXNL4A expression. Together, these data provide the first insight into how reduced TXNL4A expression in BMKS patients might compromise splicing and NCC function, resulting in defective craniofacial development in the embryo.


2019 ◽  
Vol 31 (1) ◽  
pp. 218
Author(s):  
L. N. Moro ◽  
G. Amin ◽  
V. Furmento ◽  
A. Waisman ◽  
G. Neiman ◽  
...  

Cell reprogramming has been well described in mouse and human cells. The expression of specific microRNAs has demonstrated to be essential for pluripotent maintenance and cell differentiation, but not much information is available in domestic species. A single microRNA can regulate the expression of hundreds of mRNA targets, a property given by a short sequence (called “seed”) in positions 2 to 8 from the 5′ end that is complementary to the 3′ untranslated region (UTR) tail of specific mRNAs. We aimed to generate horse induced pluripotent stem cells (iPSC), characterise them, and evaluate the expression of different microRNAs (miR-302a, b, c, d, miR-205, miR-145, miR-9, miR-96, miR-125b, and miR-296) in pluripotency and differentiation. Both cell states were evaluated (pluripotency and differentiation) in order to understand more deeply the complex network of transcriptional regulation in different contexts but with the same genomic background. Two equine iPSC lines (named L2 and L3) were characterised after the reprogramming of equine fibroblasts with the 4 human Yamanaka factors (OCT-4, SOX-2, c-MYC, KLF4). The pluripotency of both lines was assessed by phosphatase alkaline activity, expression of OCT-4, NANOG, and REX1 by RT-PCR, and by immunofluorescence of OCT-4, SOX-2, and c-MYC. In vitro differentiation to embryo bodies (EB) showed the capacity of the iPSC to differentiate into ectodermal, endodermal, and mesodermal phenotypes. MicroRNA expression was analysed by quantitative RT-PCR and resulted in higher expression of the miR-302 family, miR-9, and miR-96 in L2 and L3v. fibroblasts (P ≤ 0.05), as previously shown in human pluripotent cells. Moreover, down-regulation of miR-145 and miR-205 was observed. After differentiation to EB, greater expression of miR-96 was observed in the EB compared with iPSC, and the expression of miR-205 was induced but only in the EB-L2. In addition, we performed in silico analysis of horse and human microRNAs. First, we compared the horse-miR-302/367 cluster with the human-miR-302/367 cluster and determined a 75% homology between them. Moreover, the seed region of the horse-miR-302 family resulted complementary to the 3′ UTR of horse cell cycle regulator genes CDK2, CYCLIN D1, and E2F1, and to the 3′ UTR of the RHOC gene, which is involved in the epithelial-mesenchymal transition. The miR-145 seed sequence was complementary to the 3′ UTR region of the OCT-4 and KLF-4 horse genes. With respect to miR-9 and miR-96, the seed sequence of these genes were complementary to the HES1 and PAX-6 genes. In all cases, the same gene targets were previously demonstrated in humans. In conclusion, we report the generation and characterization of equine iPSC and determined for the first time the expression of microRNAs in equine pluripotent cells. Moreover, several results led us to think that the horse microRNAs evaluated herein are highly conserved in sequence and function with respect to the human species. It will now be necessary to generate directed differentiations to derivatives of the 3 germ layers in order to strengthen our results. This is the first report to evaluate the expression and possible targets of microRNAs in pluripotent cells from domestic animals.


2014 ◽  
Vol 26 (1) ◽  
pp. 208
Author(s):  
Y.-S. Kim ◽  
B.-R. Yi ◽  
S.-H. Hyun ◽  
C.-K. Lee ◽  
K.-C. Choi

In transgenic pig production for generating animal models of human diseases, apoptosis of an early implantation embryo disturbs the transgenic pig production. Porcine embryonic stem cells (pESC) and porcine induced pluripotent stem cells (piPSC) have an advantage for the generation of transgenic pigs; however, porcine stem cells have not yet been established. In addition, epithelial–mesenchymal transition (EMT) may play a critical role in embryo development and apoptosis. Thus, in this study we generated pESC and pIPSC and further examined the changes in EMT and apoptotic markers. We cultured pESC and piPSC in pESC media containing basic fibroblast growth factor (bFGF), doxicyclin, and leukemia inhibitory factor (LIF), and performed RT-PCR and alkaline phosphatase (AP) test to measure pluripotency markers. The RT-PCR results show that OCT-4, NANOG, and SOX2 were expressed in these stem cells, characteristic of stem cells. AP-positive cells were observed in pESCs and piPSC. In addition, we performed immunocytochemistry (ICC) to examine the expression of surface markers, such as SSEA-1 and SSEA-4. We found that pESC and piPSC expressed these markers, indicating that they have a stem cell property similar to rodent and human stem cells. Second, we treated pESC and piPSC with transforming growth factor beta (TGF-β) to examine the relationship between EMT and apoptotic markers, and confirmed a significant variation of EMT and apoptotic markers, i.e. bcl-2, bax, E-cadherin, and vimentin, by Western blot analysis. In a future study, we will examine the effect(s) of various endocrine hormones secreted by the ovary, such as E2 or P4, on the expressions of EMT and apoptotic markers in pESC and piPSC. Consequently, this study will contribute to elucidate underlying mechanism(s) of EMT and apoptosis by endocrine factors to prevent early apoptosis of pig embryos in these porcine stem cells. This work was supported by a grant from the Next-Generation BioGreen 21 Program (No. PJ009599), Rural Development Administration, Republic of Korea.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Aniela Skrzypczyk ◽  
Stephanie Kehr ◽  
Ilona Krystel ◽  
Stephan H. Bernhart ◽  
Shibashish Giri ◽  
...  

Recent advances in the stem cell field allow to obtain many human tissues in vitro. However, hepatic differentiation of induced pluripotent stem cells (iPSCs) still remains challenging. Hepatocyte-like cells (HLCs) obtained after differentiation resemble more fetal liver hepatocytes. MicroRNAs (miRNA) play an important role in the differentiation process. Here, we analysed noncoding RNA profiles from the last stages of differentiation and compare them to hepatocytes. Our results show that HLCs maintain an epithelial character and express miRNA which can block hepatocyte maturation by inhibiting the epithelial-mesenchymal transition (EMT). Additionally, we identified differentially expressed small nucleolar RNAs (snoRNAs) and discovered novel noncoding RNA (ncRNA) genes.


2010 ◽  
Vol 34 (8) ◽  
pp. S36-S36
Author(s):  
Ping Duan ◽  
Xuelin Ren ◽  
Wenhai Yan ◽  
Xuefei Han ◽  
Xu Yan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document