scholarly journals Extract of Seaweed Codium fragile Inhibits Integrin αIIbβ3-Induced Outside-in Signaling and Arterial Thrombosis

2021 ◽  
Vol 12 ◽  
Author(s):  
Tae In Kim ◽  
Yeon-Ji Kim ◽  
Kyungho Kim

Seaweeds are thought to be promising candidates for functional foods and to help prevent thrombotic and related cardiovascular diseases. Codium fragile (Suringer) Hariot has been traditionally used as a culinary ingredient, and it possesses a range of biological activities, including the inhibition of platelet function. However, the mechanism of this inhibition is unclear. The aim of this study was to examine the inhibitory effect of C. fragile in platelet function. The antiplatelet activity of C. fragile on agonist-activated platelet aggregation, granule secretion, calcium mobilization, platelet spreading, and clot retraction was assessed. The phosphorylation of c-Src, Syk, PLCγ2, and several proteins involving in the αIIbβ3 integrin outside-in signaling pathway were also studied in thrombin and CRP-stimulated platelets. The antithrombotic effect was investigated in mice using ferric chloride-induced arterial thrombus formation in vivo. Transection tail bleeding time was used to evaluate whether C. fragile inhibited primary hemostasis. The main components and contents of C. fragile ethanol extract were confirmed by GC-MS analysis. C. fragile significantly impaired agonist-induced platelet aggregation granule secretion, calcium mobilization, platelet spreading, and clot retraction. Biochemical analysis revealed that C. fragile inhibited the agonist-induced activation of c-Src, Syk, and PLCγ2, as well as the phosphorylation of PI3K, AKT, and mitogen-activated protein kinases (MAPKs). The inhibitory effect of C. fragile resulted from an inhibition of platelet αIIbβ3 integrin outside-in signal transduction during cell activation. Oral administration of C. fragile efficiently blocked FeCl3-induced arterial thrombus formation in vivo without prolonging bleeding time. GC-MS analysis revealed that phytol was the main constituent and the total content of isomers was 160.8 mg/kg. Our results demonstrated that C. fragile suppresses not only the inside-out signaling of αIIbβ3 integrin but also outside-in signal transmission. Therefore, C. fragile could be an effective antiplatelet therapeutic candidate.

Blood ◽  
1991 ◽  
Vol 77 (5) ◽  
pp. 1006-1012 ◽  
Author(s):  
AB Kelly ◽  
UM Marzec ◽  
W Krupski ◽  
A Bass ◽  
Y Cadroy ◽  
...  

Abstract To determine the role of thrombin in high blood flow, platelet- dependent thrombotic and hemostatic processes we measured the relative antithrombotic and antihemostatic effects in baboons of hirudin, a highly potent and specific antithrombin, and compared the effects of heparin, an antithrombin III-dependent inhibitor of thrombin. Thrombus formation was determined in vivo using three relevant models (homologous endarterectomized aorta, collagen-coated tubing, and Dacron vascular graft) by measuring: (1) platelet deposition, using gamma camera imaging of 111In-platelets; (2) fibrin deposition, as assessed by the incorporation of circulating 125I-fibrinogen; and (3) occlusion. The continuous intravenous infusion of 1, 5, and 20 nmol/kg per minute of recombinant hirudin (desulfatohirudin) maintained constant plasma levels of 0.16 +/- 0.03, 0.79 +/- 0.44, and 3.3 +/- 0.77 mumol/mL, respectively. Hirudin interrupted platelet and fibrin deposition in a dose-dependent manner that was profound at the highest dose for all three thrombogenic surfaces and significant at the lowest dose for thrombus formation on endarterectomized aorta. Thrombotic occlusion was prevented by all doses studied. In contrast, heparin did not inhibit either platelet or fibrin deposition when administered at a dose that maximally prolonged clotting times (100 U/kg) (P greater than .1), and only intermediate effects were produced at 10-fold that dose (1,000 U/kg). Moreover, heparin did not prevent occlusion of the test segments. Hirudin inhibited platelet hemostatic function in concert with its antithrombotic effects (bleeding times were prolonged by the intermediate and higher doses). By comparison, intravenous heparin failed to affect the bleeding time at the 100 U/kg dose (P greater than .5), and only minimally prolonged the bleeding time at the 1,000 U/kg dose (P less than .05). We conclude that platelet-dependent thrombotic and hemostatic processes are thrombin-mediated and that the biologic antithrombin hirudin produces a potent, dose-dependent inhibition of arterial thrombus formation that greatly exceeds the minimal antithrombotic effects produced by heparin.


2018 ◽  
Vol 38 (04) ◽  
pp. 203-210 ◽  
Author(s):  
Rüdiger Scharf

AbstractPlatelets react immediately in response to traumatic vascular injury by adhesion, activation, aggregation and subsequent haemostatic plug formation. While this reaction pattern is essential for haemostasis, platelet responses can also cause occlusive thrombi in diseased arteries, leading to myocardial infarction or stroke. Initially, flowing platelets are captured from the circulation to vascular lesions. This step is mediated by glycoprotein (GP) Ib-IX-V interacting with immobilized von Willebrand factor (VWF) on exposed subendothelial components. Tethered platelets can now bind to collagen through GPVI and integrin α2β1. Outside-in signals from the adhesion receptors act synergistically with inside-out signals from soluble stimuli and induce platelet activation. These mediators operate through G protein–coupled receptors and reinforce adhesion and activation. Typical manifestations of activated platelets include calcium mobilization, procoagulant activity, cytoskeletal reorganization, granule secretion and aggregation. This requires activation of integrin αIIbβ3 with shifting into a high-affinity state and is indispensable to bind soluble fibrinogen, VWF and fibronectin. The multiple interactions and the impact of thrombin result in firm adhesion and recruitment of circulating platelets into growing aggregates. A fibrin meshwork supports stabilization of haemostatic thrombi and prevents detachment by the flowing blood. This two-part review provides an overview of platelet activation and signal transduction mechanisms with a focus on αIIbβ3-mediated outside-in signaling in integrin variants. In the first part, a three-stage model of platelet recruitment and activation in vivo is presented. Along with that, platelet responses upon exposure to thrombogenic surfaces followed by platelet-to-platelet interactions and formation of haemostatic thrombi are discussed. Moreover, several determinants involved in pathological thrombosis will be reviewed.


Blood ◽  
2006 ◽  
Vol 108 (6) ◽  
pp. 1911-1918 ◽  
Author(s):  
Matt W. Goschnick ◽  
Lai-Man Lau ◽  
Janet L. Wee ◽  
Yong S. Liu ◽  
P. Mark Hogarth ◽  
...  

AbstractWe investigated the role of the hematopoietic-specific tetraspanin superfamily member, TSSC6, in platelet function using wild-type mice and TSSC6-deficient mice. TSSC6 is expressed on the surface of murine platelets and is up-regulated by thrombin stimulation, indicating an intracellular pool of TSSC6. Immunoprecipitation/Western blot studies reveal a constitutive physical association of TSSC6 with the integrin αIIbβ3 complex under strong detergent conditions. In vivo evaluation of hemostasis by tail bleeding revealed increased bleeding time, volume of blood lost, and evidence of tail rebleeds in TSSC6 null mice, indicating unstable hemostasis. Using ex vivo techniques, we showed that TSSC6-deficient platelets exhibited impaired kinetics of clot retraction, platelet aggregation at lower doses of PAR-4, and collagen and platelet spreading on fibrinogen in the presence of normal integrin αIIbβ3 expression. TSSC6-deficient platelets showed normal alpha granule secretion, normal “insideout” integrin αIIbβ3 signaling (fluorescein isothiocyanate [FITC]–fibrinogen and JON/A binding), and normal platelet adhesion on fibrinogen. Furthermore, we show that absence of platelet TSSC6 affects the secondary stability of arterial thrombi in vivo upon vascular injury. These data demonstrate that TSSC6 appears to regulate integrin αIIbβ3 “outside-in” signaling events in platelets and is necessary for stability of arterial thrombi in vivo.


2019 ◽  
Vol 3 (7) ◽  
pp. 1154-1166 ◽  
Author(s):  
Alyssa J. Moroi ◽  
Nicole M. Zwifelhofer ◽  
Matthew J. Riese ◽  
Debra K. Newman ◽  
Peter J. Newman

Abstract Diacylglycerol kinases (DGKs) are a family of enzymes that convert diacylglycerol (DAG) into phosphatidic acid (PA). The ζ isoform of DGK (DGKζ) has been reported to inhibit T-cell responsiveness by downregulating intracellular levels of DAG. However, its role in platelet function remains undefined. In this study, we show that DGKζ was expressed at significant levels in both platelets and megakaryocytes and that DGKζ-knockout (DGKζ-KO) mouse platelets were hyperreactive to glycoprotein VI (GPVI) agonists, as assessed by aggregation, spreading, granule secretion, and activation of relevant signal transduction molecules. In contrast, they were less responsive to thrombin. Platelets from DGKζ-KO mice accumulated faster on collagen-coated microfluidic surfaces under conditions of arterial shear and stopped blood flow faster after ferric chloride–induced carotid artery injury. Other measures of hemostasis, as measured by tail bleeding time and rotational thromboelastometry analysis, were normal. Interestingly, DGKζ deficiency led to increased GPVI expression on the platelet and megakaryocyte surfaces without affecting the expression of other platelet surface receptors. These results implicate DGKζ as a novel negative regulator of GPVI-mediated platelet activation that plays an important role in regulating thrombus formation in vivo.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2423-2423
Author(s):  
Yan Yang ◽  
Xiaohong Ruby Xu ◽  
Heyu Ni ◽  
Liping Ma ◽  
Wenhua Ling ◽  
...  

Abstract Introduction: Platelet integrin αIIbβ3 outside-in signaling is crucial for platelet adhesion and aggregation, and contributes to atherogenesis. Coenzyme Q10 (CoQ10) has been implicated as a protective factor against cardiovascular diseases (CVDs), particularly atherosclerosis. However, whether CoQ10 attenuates atherosclerosis through inhibiting platelet function and αIIbβ3 outside-in signaling is unknown. The aim of this study was to explore whether CoQ10 affects platelet function and αIIbβ3 outside-in signalling and thus inhibiting the progress of atherosclerosis in vivo and the underlying mechanisms in vitro. Methods: In vitro study, The murine platelet rich plasma (PRP) from C57BL/6J wild-type (WT) mice or human PRP and gel-filtered platelets were incubated with different concentrations (1, 10 or 100 μM) of CoQ10 or the vehicle control for 50 min. Platelet aggregation, spreading on fibrinogen (Fg) and clot retraction were determined. In addition, the effects of CoQ10 on platelet integrin αIIbβ3 inside-out signalling (e.g., talin-1 and kindlin-3 binding to integrin β3) were determined by immunoprecipitation, and outside-in signalling (e.g., phosphorylation of sarcoma tyrosine-protein kinase (c-Src), focal adhesion kinase (FAK), and β3 cytoplasmic tail, myosin light chain (MLC)) were determined by Western blotting. The levels of platelet ATP and cAMP were measured by ELISA assays. In vivo study, male homozygous apolipoprotein E-deficient (apoE-/-) mice (C57BL/6 genetic background) were fed either a standard normal AIN-93G diet (NC group), a Western-type diet (HFD group) or a Western-type diet supplemented with CoQ10 (1800 mg/kg diet) (CoQ10 group) for 12 weeks. Platelet aggregation, granule secretion, platelet spreading, clot retraction, integrin αIIbβ3 outside-in signalling, platelet-leukocyte interactions and carotid artery plaque area were also examined. In our randomized, double-blind, placebo-controlled trial, 101 hypercholesterolemic subjects were randomly administrated to 120 mg CoQ10 or placebo daily for 24 weeks. Platelet intracellular CoQ10 levels, platelet aggregation in PRP, platelet platelet factor 4 (PF-4) and C-C motif ligand 5 (CCL5) release, and platelet integrin αIIbβ3 outside-in signalling were also evaluated before and after 24 weeks of intervention. Results: We found that CoQ10 inhibited human and WT mouse platelet aggregation, platelet spreading, granule secretion, and clot retraction in vitro and apoE-/- mice on a high fat diet. CoQ10 also reduced atherosclerosis and platelet-monocyte aggregation in apoE-/- mice. The inhibitory effects of CoQ10 is mediated by attenuated αIIbβ3 outside-in signalling pathway (e.g., attenuation of phosphorylation of c-Src, FAK, and β3 cytoplasmic tail, and MLC in thrombin-activated platelets or platelets exposed to immobilized Fg), which requires up-regulation of the cAMP/PKA pathway, where CoQ10 inhibited phosphodiesterase 3A activity and activated the A2A adenosine receptor. However, CoQ10 did not affect platelet integrin αIIbβ3 inside-out signalling pathway, platelet cellular ATP, or platelet apoptosis (the mitochondrial membrane potential and phosphatidylserine exposure). Moreover, our clinical trial in dyslipidemic patients demonstrated that CoQ10 supplementation attenuated platelet aggregation, which was positively correlated with the increased platelet CoQ10 concentrations, inhibited αIIbβ3 outside-in signalling and decreased platelet PF-4 and CCL5 secretion. Conclusions: We present new data to suggest that CoQ10 plays a novel role in attenuating platelet function and integrin αIIbβ3 outside-in signalling though targeting cAMP/PKA signalling cascade and thus inhibiting the progress of atherosclerosis. CoQ10 is therefore a promising agent for the prevention and/or treatment for cardiovascular disease. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1058-1058
Author(s):  
Secil Koseoglu ◽  
Jennifer L Fitch-Tewfik ◽  
Christian G. Peters ◽  
Lydia Danglot ◽  
Thierry Galli ◽  
...  

Abstract Platelet granule secretion is important not only for hemostasis and thrombosis, but also for a variety of physiological processes including inflammation, angiogenesis and malignancy. Vesicle Associated Membrane Proteins (VAMPs) are a group of v-SNARE proteins resident on the platelet granule surface that participate in granule secretion. Platelets contain several VAMP isoforms including VAMP-2, VAMP-3, VAMP-7, and VAMP-8. VAMP-7 is unique in that it contains an N-terminal profilin-like longin domain. Previous work by our group demonstrated spatial segregation of granules expressing different VAMPs during platelet spreading. Granules expressing VAMP-3 and VAMP-8 localized to the granulomere of spreading platelets, while those expressing VAMP-7 moved towards the periphery. Based on this observation, we proposed that VAMP-7+ granules move to the periphery of the spreading platelet to add membrane to growing actin structures. To assess this hypothesis, platelets from VAMP-7 null mice were used to analyze the role of VAMP-7 in platelet spreading, aggregation and secretion. VAMP-7 null platelets were normal in size, shape, and number. When compared to wild-type platelets, VAMP-7 null platelets did not show any defects in aggregation upon exposure to increasing doses of the PAR4 agonist peptide, AYPGKF, or collagen. In contrast, the surface area of VAMP-7 null platelets following 15 min of spreading on poly-L-lysine was only 51% that of wild-type of platelets (P < 0.05). To assess mechanisms of the movement of VAMP-7 to the platelet periphery, the association of VAMP-7 to the Triton X-100-insoluble platelet cytoskeleton was evaluated and results showed that VAMP-7 associated with the actin cytoskeleton. Moreover, VAMP-7 null platelets showed impaired P-selectin surface expression and PF4 secretion at low concentrations of AYPGKF. TIMP-2 and VEGF localize to VAMP-7 expressing granules in the periphery of spread platelets. We therefore evaluated the secretion of TIMP-2 and VEGF from VAMP-7 null platelets. Secretion of TIMP-2 and VEGF was reduced even at saturating doses of agonist (300 mM AYPGKF). To examine the role of VAMP-7 in a-granule exocytosis during platelet activation in vivo, PF4 release was monitored following laser-induced injury of cremaster arterioles. Platelet accumulation at sites of laser injury was identical in wild-type and VAMP-7 null mice. In wild-type mice, PF4 was secreted by activated platelets and bound back to activated endothelium and platelets producing a localized concentration of PF4 that accumulated over 15 min following injury. PF4 release from platelets lacking VAMP-7 was decreased to 47% of that of control. These results demonstrate that VAMP-7 interacts with the actin cytoskeleton and functions selectively in a-granule exocytosis. VAMP-7 associates with the actin cytoskeleton and functions during platelet spreading, adding further support to the premise that membrane fusion occurring during granule secretion is an essential component of normal platelet spreading. This VAMP-7 mediated, actin-dependent mechanism of secretion is not important for platelet thrombus formation, but rather functions in the release of particular granular contents, such as PF4, at sites of vascular injury. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 5194-5194
Author(s):  
Yiming Zhao ◽  
Changgeng Ruan

Abstract Abstract 5194 Objective: To investigate the in vivo antithrombotic efficacy of an anti-VWF monoclonal antibody SZ-123, and its potential underlying mechanism. Methods and Results: Cyclic flow reductions (CFRs) were measured in the femoral artery of monkeys before and after intravenous administration of SZ-123. Ex vivo VWF binding to collagen, platelet aggregation, platelet count and template bleeding time were performed as measurements of antithrombotic activity. In addition, plasma VWF, SZ-123 levels, and VWF occupancy were measured by ELISA. Administration of 0. 1, 0. 3, and 0. 6 mg/kg SZ-123 resulted in 45. 3%, 78. 2%, and 100% reduction in CFRs, respectively. When 0. 3 and 0. 6 mg/kg SZ-123 were administrated, 100% of VWF was occupied by the antibody. Moreover, 100% ex vivo inhibition of VWF-collagen binding and 60–95% inhibition of platelet aggregation were observed from 15 min to 1h. None of the doses resulted in significant prolongation of bleeding time. In vitro experiment also revealed that SZ-123 not only blocks collagen-VWF A3 interaction but also inhibits indirectly VWF A1 binding to GPIba induced by ristocetin. Conclusions: SZ-123 prevents in vivo arterial thrombus formation under high shear conditions by inhibiting VWF A3–collagen and VWF A1-platelet interactions and does not prolong bleeding time. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1991 ◽  
Vol 77 (5) ◽  
pp. 1006-1012 ◽  
Author(s):  
AB Kelly ◽  
UM Marzec ◽  
W Krupski ◽  
A Bass ◽  
Y Cadroy ◽  
...  

To determine the role of thrombin in high blood flow, platelet- dependent thrombotic and hemostatic processes we measured the relative antithrombotic and antihemostatic effects in baboons of hirudin, a highly potent and specific antithrombin, and compared the effects of heparin, an antithrombin III-dependent inhibitor of thrombin. Thrombus formation was determined in vivo using three relevant models (homologous endarterectomized aorta, collagen-coated tubing, and Dacron vascular graft) by measuring: (1) platelet deposition, using gamma camera imaging of 111In-platelets; (2) fibrin deposition, as assessed by the incorporation of circulating 125I-fibrinogen; and (3) occlusion. The continuous intravenous infusion of 1, 5, and 20 nmol/kg per minute of recombinant hirudin (desulfatohirudin) maintained constant plasma levels of 0.16 +/- 0.03, 0.79 +/- 0.44, and 3.3 +/- 0.77 mumol/mL, respectively. Hirudin interrupted platelet and fibrin deposition in a dose-dependent manner that was profound at the highest dose for all three thrombogenic surfaces and significant at the lowest dose for thrombus formation on endarterectomized aorta. Thrombotic occlusion was prevented by all doses studied. In contrast, heparin did not inhibit either platelet or fibrin deposition when administered at a dose that maximally prolonged clotting times (100 U/kg) (P greater than .1), and only intermediate effects were produced at 10-fold that dose (1,000 U/kg). Moreover, heparin did not prevent occlusion of the test segments. Hirudin inhibited platelet hemostatic function in concert with its antithrombotic effects (bleeding times were prolonged by the intermediate and higher doses). By comparison, intravenous heparin failed to affect the bleeding time at the 100 U/kg dose (P greater than .5), and only minimally prolonged the bleeding time at the 1,000 U/kg dose (P less than .05). We conclude that platelet-dependent thrombotic and hemostatic processes are thrombin-mediated and that the biologic antithrombin hirudin produces a potent, dose-dependent inhibition of arterial thrombus formation that greatly exceeds the minimal antithrombotic effects produced by heparin.


1994 ◽  
Vol 71 (01) ◽  
pp. 095-102 ◽  
Author(s):  
Désiré Collen ◽  
Hua Rong Lu ◽  
Jean-Marie Stassen ◽  
Ingrid Vreys ◽  
Tsunehiro Yasuda ◽  
...  

SummaryCyclic Arg-Gly-Asp (RGD) containing synthetic peptides such as L-cysteine, N-(mercaptoacetyl)-D-tyrosyl-L-arginylglycyl-L-a-aspartyl-cyclic (1→5)-sulfide, 5-oxide (G4120) and acetyl-L-cysteinyl-L-asparaginyl-L-prolyl-L-arginyl-glycyl-L-α-aspartyl-[0-methyltyrosyl]-L-arginyl-L-cysteinamide, cyclic 1→9-sulfide (TP9201) bind with high affinity to the platelet GPIIb/IIIa receptor.The relationship between antithrombotic effect, ex vivo platelet aggregation and bleeding time prolongation with both agents was studied in hamsters with a standardized femoral vein endothelial cell injury predisposing to platelet-rich mural thrombosis, and in dogs with a carotid arterial eversion graft inserted in the femoral artery. Intravenous administration of G4120 in hamsters inhibited in vivo thrombus formation with a 50% inhibitory bolus dose (ID50) of approximately 20 μg/kg, ex vivo ADP-induccd platelet aggregation with ID50 of 10 μg/kg, and bolus injection of 1 mg/kg prolonged the bleeding time from 38 ± 9 to 1,100 ± 330 s. Administration of TP9201 in hamsters inhibited in vivo thrombus formation with ID50 of 30 μg/kg, ex vivo platelet aggregation with an ID50 of 50 μg/kg and bolus injection of 1 mg/kg did not prolong the template bleeding time. In the dog eversion graft model, infusion of 100 μg/kg of G4120 over 60 min did not fully inhibit platelet-mediated thrombotic occlusion but was associated with inhibition of ADP-induccd ex vivo platelet aggregation and with prolongation of the template bleeding time from 1.3 ± 0.4 to 12 ± 2 min. Infusion of 300 μg/kg of TP9201 over 60 min completely prevented thrombotic occlusion, inhibited ex vivo platelet aggregation, but was not associated with prolongation of the template bleeding time.TP9201, unlike G4120, inhibits in vivo platelet-mediated thrombus formation without associated prolongation of the template bleeding time.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Ahmed Alarabi ◽  
Zubair Karim ◽  
Victoria Hinojos ◽  
Patricia A Lozano ◽  
Keziah Hernandez ◽  
...  

Platelet activation involves tightly regulated processes to ensure a proper hemostasis response, but when unbalanced, can lead to pathological consequences such as thrombus formation. G-protein coupled receptors (GPCRs) regulate platelet function by interacting with and mediating the response to various physiological agonists. To this end, an essential mediator of GPCR signaling is the G protein Gαβγ heterotrimers, in which the βγ subunits are central players in downstream signaling pathways. While much is known regarding the role of the Gα subunit in platelet function, that of the βγ remains poorly understood. Therefore, we investigated the role of Gβγ subunits in platelet function using a Gβγ (small molecule) inhibitor, namely gallein. We observed that gallein inhibits platelet aggregation and secretion in response to agonist stimulation, in both mouse and human platelets. Furthermore, gallein also exerted inhibitory effects on integrin αIIbβ3 activation and clot retraction. Finally, gallein’s inhibitory effects manifested in vivo , as documented by its ability to modulate physiological hemostasis and delay thrombus formation. Taken together, our findings demonstrate, for the first time, that Gβγ directly regulates GPCR-dependent platelet function, in vitro and in vivo . Moreover, these data highlight Gβγ as a novel therapeutic target for managing thrombotic disorders.


Sign in / Sign up

Export Citation Format

Share Document