scholarly journals PPARγ2 Pro12Ala Polymorphism is Associated in Children With Traits Related to Susceptibility to Type 2 Diabetes

2021 ◽  
Vol 12 ◽  
Author(s):  
Claudia Vales-Villamarín ◽  
Olaya de Dios ◽  
Iris Pérez-Nadador ◽  
Teresa Gavela-Pérez ◽  
Leandro Soriano-Guillén ◽  
...  

Peroxisome proliferator-activated receptor gamma (PPARγ) is a ligand-activated nuclear receptor that regulates glucose and lipid metabolism. Pharmacological activators of PPARγ are being used as a treatment of obesity related disorders such as dyslipidaemia and type 2 diabetes, but questions remain open regarding the effects of PPARγ on traits related to the development of type 2 diabetes. In our study, we have analyzed the relationship of the common variant Pro12Ala in the human PPARγ2 gene with the presence of obesity and with insulin, HOMA and lipid profile in a representative sample of 6-to 8-year-old children free from the confounding factors associated with adults. We found that Ala12Ala genotype was significantly more frequent in females with obesity than in those without obesity, with Ala12Ala carriers having significantly higher weight and body mass index (BMI), however the association disappeared when adjusting by leptin concentrations. The Ala12Ala genotype was associated with significantly higher HDL-cholesterol and apoA-I levels in males but not in females, independently of BMI. In a recessive model, in females, leptin levels appeared higher in Ala12Ala carriers. Although no apparent differences were observed in any sex when analyzing insulin levels and HOMA among genotypes without adjusting, lower insulin levels and lower HOMA appeared associated with Ala12Ala carriers when adjusting for BMI and leptin levels. In summary, our data showed that leptin seems to be having an effect on the association between the PPARγ2 Pro12Ala and BMI. Besides, after controlling for BMI and leptin, a protective effect of the Ala12Ala variant of the PPARγ2 Pro12Ala polymorphism on insulin sensitivity is evident already in prepubertal children.

PPAR Research ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
De-Si Pan ◽  
Wei Wang ◽  
Nan-Song Liu ◽  
Qian-Jiao Yang ◽  
Kun Zhang ◽  
...  

Type 2 diabetes mellitus is often treated with insulin-sensitizing drugs called thiazolidinediones (TZD), which improve insulin resistance and glycemic control. Despite their effectiveness in treating diabetes, these drugs provide little protection from eminent cardiovascular disease associated with diabetes. Here we demonstrate how chiglitazar, a configuration-restricted non-TZD peroxisome proliferator-activated receptor (PPAR) pan agonist with moderate transcription activity, preferentially regulates ANGPTL4 and PDK4, which are involved in glucose and lipid metabolism. CDK5-mediated phosphorylation at serine 273 (S273) is a unique regulatory mechanism reserved for PPARγ, and this event is linked to insulin resistance in type 2 diabetes mellitus. Our data demonstrates that chiglitazar modulates gene expression differently from two TZDs, rosiglitazone and pioglitazone, via its configuration-restricted binding and phosphorylation inhibition of PPARγ. Chiglitazar induced significantly greater expression of ANGPTL4 and PDK4 than rosiglitazone and pioglitazone in different cell models. These increased expressions were dependent on the phosphorylation status of PPARγ at S273. Furthermore, ChIP and AlphaScreen assays showed that phosphorylation at S273 inhibited promoter binding and cofactor recruitment by PPARγ. Based on these results, activities from pan agonist chiglitazar can be an effective part of a long-term therapeutic strategy for treating type 2 diabetes in a more balanced action among its targeted organs.


Sign in / Sign up

Export Citation Format

Share Document