scholarly journals Mechanisms of Peripheral and Central Pain Sensitization: Focus on Ocular Pain

2021 ◽  
Vol 12 ◽  
Author(s):  
Giulia Puja ◽  
Balazs Sonkodi ◽  
Rita Bardoni

Persistent ocular pain caused by corneal inflammation and/or nerve injury is accompanied by significant alterations along the pain axis. Both primary sensory neurons in the trigeminal nerves and secondary neurons in the spinal trigeminal nucleus are subjected to profound morphological and functional changes, leading to peripheral and central pain sensitization. Several studies using animal models of inflammatory and neuropathic ocular pain have provided insight about the mechanisms involved in these maladaptive changes. Recently, the advent of new techniques such as optogenetics or genetic neuronal labelling has allowed the investigation of identified circuits involved in nociception, both at the spinal and trigeminal level. In this review, we will describe some of the mechanisms that contribute to the perception of ocular pain at the periphery and at the spinal trigeminal nucleus. Recent advances in the discovery of molecular and cellular mechanisms contributing to peripheral and central pain sensitization of the trigeminal pathways will be also presented.

2014 ◽  
pp. 157-171
Author(s):  
Sylvain Grignon ◽  
Katherine Stavro ◽  
Stéphane Potvin

2019 ◽  
Author(s):  
John P. McCauley ◽  
Maurice A. Petroccione ◽  
Lianna Y. D’Brant ◽  
Gabrielle C. Todd ◽  
Nurat Affinnih ◽  
...  

SummaryMost animal species operate according to a 24-hour period set by the suprachiasmatic nucleus (SCN) of the hypothalamus. The rhythmic activity of the SCN is known to modulate hippocampal-dependent memory processes, but the molecular and cellular mechanisms that account for this effect remain largely unknown. Here, we show that there are cell-type specific structural and functional changes that occur with circadian rhythmicity in neurons and astrocytes in hippocampal area CA1. Pyramidal neurons change the surface expression of NMDA receptors, whereas astrocytes change their proximity to synapses. Together, these phenomena alter glutamate clearance, receptor activation and integration of temporally clustered excitatory synaptic inputs, ultimately shaping hippocampal-dependent learningin vivo. We identify corticosterone as a key contributor to changes in synaptic strength. These findings identify important mechanisms through which neurons and astrocytes modify the molecular composition and structure of the synaptic environment, contribute to the local storage of information in the hippocampus and alter the temporal dynamics of cognitive processing.


Sign in / Sign up

Export Citation Format

Share Document