scholarly journals Quantum Walk-Based Vehicle Routing Optimisation

2021 ◽  
Vol 9 ◽  
Author(s):  
T. Bennett ◽  
E. Matwiejew ◽  
S. Marsh ◽  
J. B. Wang

This paper demonstrates the applicability of the Quantum Walk-based Optimisation Algorithm (QWOA) to the Capacitated Vehicle Routing Problem (CVRP). Efficient algorithms are developed for the indexing and unindexing of the solution space and for implementing the required alternating phase-walk unitaries, which are the core components of QWOA. Results of numerical simulation demonstrate that the QWOA is capable of producing convergence to near-optimal solutions for a randomly generated eight location CVRP. Preparation of the amplified quantum state in this example problem is demonstrated to produce higher-quality solutions than expected from classical random sampling of equivalent computational effort.

Author(s):  
Arman Davtyan ◽  
Suren Khachatryan

A new metaheuristic algorithm is proposed for Capacitated Vehicle Routing Problem. CVRP is one of the fundamental problems in combinatorial optimization that deals with transport route minimization. The algorithm combines Simulated Annealing, multi-start and simultaneous computing techniques. A series of computational tests are conducted on several CVRP benchmarks and near-optimal solutions are obtained. The results indicate superior performance compared with Simulated Annealing


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Ha-Bang Ban ◽  
Phuong Khanh Nguyen

AbstractThe Asymmetric Distance-Constrained Vehicle Routing Problem (ADVRP) is NP-hard as it is a natural extension of the NP-hard Vehicle Routing Problem. In ADVRP problem, each customer is visited exactly once by a vehicle; every tour starts and ends at a depot; and the traveled distance by each vehicle is not allowed to exceed a predetermined limit. We propose a hybrid metaheuristic algorithm combining the Randomized Variable Neighborhood Search (RVNS) and the Tabu Search (TS) to solve the problem. The combination of multiple neighborhoods and tabu mechanism is used for their capacity to escape local optima while exploring the solution space. Furthermore, the intensification and diversification phases are also included to deliver optimized and diversified solutions. Extensive numerical experiments and comparisons with all the state-of-the-art algorithms show that the proposed method is highly competitive in terms of solution quality and computation time, providing new best solutions for a number of instances.


OR Spectrum ◽  
2021 ◽  
Author(s):  
Christian Tilk ◽  
Katharina Olkis ◽  
Stefan Irnich

AbstractThe ongoing rise in e-commerce comes along with an increasing number of first-time delivery failures due to the absence of the customer at the delivery location. Failed deliveries result in rework which in turn has a large impact on the carriers’ delivery cost. In the classical vehicle routing problem (VRP) with time windows, each customer request has only one location and one time window describing where and when shipments need to be delivered. In contrast, we introduce and analyze the vehicle routing problem with delivery options (VRPDO), in which some requests can be shipped to alternative locations with possibly different time windows. Furthermore, customers may prefer some delivery options. The carrier must then select, for each request, one delivery option such that the carriers’ overall cost is minimized and a given service level regarding customer preferences is achieved. Moreover, when delivery options share a common location, e.g., a locker, capacities must be respected when assigning shipments. To solve the VRPDO exactly, we present a new branch-price-and-cut algorithm. The associated pricing subproblem is a shortest-path problem with resource constraints that we solve with a bidirectional labeling algorithm on an auxiliary network. We focus on the comparison of two alternative modeling approaches for the auxiliary network and present optimal solutions for instances with up to 100 delivery options. Moreover, we provide 17 new optimal solutions for the benchmark set for the VRP with roaming delivery locations.


2012 ◽  
Vol 6-7 ◽  
pp. 256-260
Author(s):  
Hai Hua Li ◽  
Zong Yan Xu ◽  
Fei Fei Zhou

Vehicle routing problem is a typical NP-hard problem and is difficult to get an optimum solution. Aiming at the shortages of the existing methods, this paper proposed an algorithm based on immune clonal selection to solve vehicle routing problem. In the algorithm, expressed antibody with matrix, generated the initial population of antibodies randomly, and employed the operations such as clonal selection, genetic mutation iteratively to search optimum solution in solution space. The experimental results show that the algorithm presented here can converge to the global optimum solution rapidly, overcoming such disadvantages of the genetic algorithm as slower convergent velocity and the convergence to a local optimum solution.


Sign in / Sign up

Export Citation Format

Share Document