scholarly journals The Effect of the Arctic Oscillation on the Predictability of Mid-High Latitude Circulation in December

2021 ◽  
Vol 9 ◽  
Author(s):  
Zhihai Zheng ◽  
Jin Ban ◽  
Yongsheng Li

The impact of the Arctic Oscillation (AO) on the predictability of mid-high latitude circulation in December is analysed using a full set of hindcasts generated form the Beijing Climate Center Atmospheric General Circulation Model version 2.2 (BCC_AGCM2.2). The results showed that there is a relationship between the predictability of the model on the Eurasian mid-high latitude circulation and the phase of AO, with the highest predictability in the negative AO phase and the lowest predictability in the normal AO phase. Moreover, the difference of predictability exists at different lead times. The potential sources of the high predictability in the negative AO phase in the BCC_AGCM2.2 model were further diagnosed. It was found that the differences of predictability on the Eurasian mid-high latitude circulation also exist in different Arctic sea ice anomalies, and the model performs well in reproducing the response of Arctic sea ice on the AO. The predictability is higher when sudden stratospheric warming (SSW) events occur, and strong SSW events tend to form a negative AO phase distribution in the Eurasian mid-high latitudes both in the observation and model. In addition, the model captured the blocking over the mid-high latitudes well, it may be related to the relatively long duration of the blocking. Changes in the AO will affect the blocking circulations over the mid-high latitudes, which partly explains the high predictability of the model in negative AO phases from the aspect of the internal atmospheric dynamics.

2016 ◽  
Vol 29 (11) ◽  
pp. 3925-3947 ◽  
Author(s):  
Dehai Luo ◽  
Yiqing Xiao ◽  
Yao Yao ◽  
Aiguo Dai ◽  
Ian Simmonds ◽  
...  

Abstract In Part I of this study, the impact of Ural blocking (UB) on the warm Arctic–cold Eurasian (WACE) pattern associated with the winter (DJF) arctic sea ice loss during 1979–2013 is examined by dividing the arctic sea ice reduction region into two dominant subregions: the Barents and Kara Seas (BKS) and the North American high-latitude (NAH) region (Baffin and Hudson Bay, Davis Strait, and Labrador Sea). It is found that atmospheric response to arctic sea ice loss resembles a negative Arctic response oscillation with a dominant positive height anomaly over the Eurasian subarctic region. Regression analyses of the two subregions further show that the sea ice loss over the BKS corresponds to the UB pattern together with a positive North Atlantic Oscillation (NAO+) and is followed by a WACE anomaly, while the sea ice reduction in the NAH region corresponds to a negative NAO (NAO−) pattern with a cold anomaly over northern Eurasia. Further analyses reveal that the UB pattern is more persistent during the period 2000–13 (P2) than 1979–99 (P1) because of the reduced middle-to-high-latitude mean westerly winds over Eurasia associated with the intense BKS warming. During P2 the establishment of the UB becomes a slow process because of the role of the BKS warming, while its decay is slightly rapid. In the presence of the long-lived UB that often occurs with the NAO+, the BKS-warming-induced DJF-mean anticyclonic anomaly is intensified and widened and then expands southward during P2 to amplify the WACE pattern and induce the southward displacement of its cold anomaly and the further loss of the BKS sea ice. Thus, midlatitude Eurasian cold events should be more frequent as the sea ice loss continues over the BKS.


2012 ◽  
Vol 12 (24) ◽  
pp. 11819-11831 ◽  
Author(s):  
D. Cai ◽  
M. Dameris ◽  
H. Garny ◽  
T. Runde

Abstract. In this study the impact of a substantially reduced Arctic sea-ice cover on the lower and middle stratosphere is investigated. For this purpose two simulations with fixed boundary conditions (the so-called time-slice mode) were performed with a Chemistry-Climate Model. A reference time-slice with boundary conditions representing the year 2000 is compared to a second sensitivity simulation in which the boundary conditions are identical apart from the polar sea-ice cover, which is set to represent the years 2089–2099. Three features of Arctic air temperature response have been identified which are discussed in detail. Firstly, tropospheric mean polar temperatures increase up to 7 K during winter. This warming is primarily driven by changes in outgoing long-wave radiation. The tropospheric response (e.g. geopotential height anomaly) is in reasonable agreement with similar studies dealing with Arctic sea-ice decrease and the consequences on the troposphere. Secondly, temperatures decrease significantly in the summer stratosphere caused by a decline in outgoing short-wave radiation, accompanied by a slight increase of ozone mixing ratios. Thirdly, there are short periods of statistical significant temperature anomalies in the winter stratosphere probably driven by modified planetary wave activity, but generally there is no clear stratospheric response. The Arctic Oscillation (AO)-index, which is related to the troposphere–stratosphere coupling favours a more neutral state during winter. The only clear stratospheric response can be shown during November. Significant changes in Arctic temperature, meridional eddy heat fluxes and the Arctic Oscillation (AO)-index are detected. In this study the overall stratospheric response to the prescribed sea-ice anomaly is small compared to the tropospheric changes.


2016 ◽  
Vol 29 (14) ◽  
pp. 5103-5122 ◽  
Author(s):  
Xiao-Yi Yang ◽  
Xiaojun Yuan ◽  
Mingfang Ting

Abstract The recent accelerated Arctic sea ice decline has been proposed as a possible forcing factor for midlatitude circulation changes, which can be projected onto the Arctic Oscillation (AO) and/or North Atlantic Oscillation (NAO) mode. However, the timing and physical mechanisms linking AO responses to the Arctic sea ice forcing are not entirely understood. In this study, the authors suggest a connection between November sea ice extent in the Barents and Kara Seas and the following winter’s atmospheric circulation in terms of the fast sea ice retreat and the subsequent modification of local air–sea heat fluxes. In particular, the dynamical processes that link November sea ice in the Barents and Kara Seas with the development of AO anomalies in February is explored. In response to the lower-tropospheric warming associated with the initial thermal effect of the sea ice loss, the large-scale atmospheric circulation goes through a series of dynamical adjustment processes: The decelerated zonal-mean zonal wind anomalies propagate gradually from the subarctic to midlatitudes in about one month. The equivalent barotropic AO dipole pattern develops in January because of wave–mean flow interaction and firmly establishes itself in February following the weakening and warming of the stratospheric polar vortex. This connection between sea ice loss and the AO mode is robust on time scales ranging from interannual to decadal. Therefore, the recent winter AO weakening and the corresponding midlatitude climate change may be partly associated with the early winter sea ice loss in the Barents and Kara Seas.


2012 ◽  
Vol 5 (12) ◽  
pp. 897-900 ◽  
Author(s):  
Dennis A. Darby ◽  
Joseph D. Ortiz ◽  
Chester E. Grosch ◽  
Steven P. Lund

2016 ◽  
Vol 29 (2) ◽  
pp. 889-902 ◽  
Author(s):  
Rasmus A. Pedersen ◽  
Ivana Cvijanovic ◽  
Peter L. Langen ◽  
Bo M. Vinther

Abstract Reduction of the Arctic sea ice cover can affect the atmospheric circulation and thus impact the climate beyond the Arctic. The atmospheric response may, however, vary with the geographical location of sea ice loss. The atmospheric sensitivity to the location of sea ice loss is studied using a general circulation model in a configuration that allows combination of a prescribed sea ice cover and an active mixed layer ocean. This hybrid setup makes it possible to simulate the isolated impact of sea ice loss and provides a more complete response compared to experiments with fixed sea surface temperatures. Three investigated sea ice scenarios with ice loss in different regions all exhibit substantial near-surface warming, which peaks over the area of ice loss. The maximum warming is found during winter, delayed compared to the maximum sea ice reduction. The wintertime response of the midlatitude atmospheric circulation shows a nonuniform sensitivity to the location of sea ice reduction. While all three scenarios exhibit decreased zonal winds related to high-latitude geopotential height increases, the magnitudes and locations of the anomalies vary between the simulations. Investigation of the North Atlantic Oscillation reveals a high sensitivity to the location of the ice loss. The northern center of action exhibits clear shifts in response to the different sea ice reductions. Sea ice loss in the Atlantic and Pacific sectors of the Arctic cause westward and eastward shifts, respectively.


2020 ◽  
Vol 117 (42) ◽  
pp. 26069-26075
Author(s):  
Anne de Vernal ◽  
Claude Hillaire-Marcel ◽  
Cynthia Le Duc ◽  
Philippe Roberge ◽  
Camille Brice ◽  
...  

The impact of the ongoing anthropogenic warming on the Arctic Ocean sea ice is ascertained and closely monitored. However, its long-term fate remains an open question as its natural variability on centennial to millennial timescales is not well documented. Here, we use marine sedimentary records to reconstruct Arctic sea-ice fluctuations. Cores collected along the Lomonosov Ridge that extends across the Arctic Ocean from northern Greenland to the Laptev Sea were radiocarbon dated and analyzed for their micropaleontological and palynological contents, both bearing information on the past sea-ice cover. Results demonstrate that multiyear pack ice remained a robust feature of the western and central Lomonosov Ridge and that perennial sea ice remained present throughout the present interglacial, even during the climate optimum of the middle Holocene that globally peaked ∼6,500 y ago. In contradistinction, the southeastern Lomonosov Ridge area experienced seasonally sea-ice-free conditions, at least, sporadically, until about 4,000 y ago. They were marked by relatively high phytoplanktonic productivity and organic carbon fluxes at the seafloor resulting in low biogenic carbonate preservation. These results point to contrasted west–east surface ocean conditions in the Arctic Ocean, not unlike those of the Arctic dipole linked to the recent loss of Arctic sea ice. Hence, our data suggest that seasonally ice-free conditions in the southeastern Arctic Ocean with a dominant Arctic dipolar pattern, may be a recurrent feature under “warm world” climate.


2010 ◽  
Vol 23 (2) ◽  
pp. 333-351 ◽  
Author(s):  
Clara Deser ◽  
Robert Tomas ◽  
Michael Alexander ◽  
David Lawrence

Abstract The authors investigate the atmospheric response to projected Arctic sea ice loss at the end of the twenty-first century using an atmospheric general circulation model (GCM) coupled to a land surface model. The response was obtained from two 60-yr integrations: one with a repeating seasonal cycle of specified sea ice conditions for the late twentieth century (1980–99) and one with that of sea ice conditions for the late twenty-first century (2080–99). In both integrations, a repeating seasonal cycle of SSTs for 1980–99 was prescribed to isolate the impact of projected future sea ice loss. Note that greenhouse gas concentrations remained fixed at 1980–99 levels in both sets of experiments. The twentieth- and twenty-first-century sea ice (and SST) conditions were obtained from ensemble mean integrations of a coupled GCM under historical forcing and Special Report on Emissions Scenarios (SRES) A1B scenario forcing, respectively. The loss of Arctic sea ice is greatest in summer and fall, yet the response of the net surface energy budget over the Arctic Ocean is largest in winter. Air temperature and precipitation responses also maximize in winter, both over the Arctic Ocean and over the adjacent high-latitude continents. Snow depths increase over Siberia and northern Canada because of the enhanced winter precipitation. Atmospheric warming over the high-latitude continents is mainly confined to the boundary layer (below ∼850 hPa) and to regions with a strong low-level temperature inversion. Enhanced warm air advection by submonthly transient motions is the primary mechanism for the terrestrial warming. A significant large-scale atmospheric circulation response is found during winter, with a baroclinic (equivalent barotropic) vertical structure over the Arctic in November–December (January–March). This response resembles the negative phase of the North Atlantic Oscillation in February only. Comparison with the fully coupled model reveals that Arctic sea ice loss accounts for most of the seasonal, spatial, and vertical structure of the high-latitude warming response to greenhouse gas forcing at the end of the twenty-first century.


2020 ◽  
Author(s):  
H. Jakob Belter ◽  
Thomas Krumpen ◽  
Luisa von Albedyll ◽  
Tatiana A. Alekseeva ◽  
Sergei V. Frolov ◽  
...  

Abstract. Changes in Arctic sea ice thickness are the result of complex interactions of the dynamic and variable ice cover with atmosphere and ocean. Most of the sea ice exits the Arctic Ocean through Fram Strait, which is why long-term measurements of ice thickness at the end of the Transpolar Drift provide insight into the integrated signals of thermodynamic and dynamic influences along the pathways of Arctic sea ice. We present an updated time series of extensive ice thickness surveys carried out at the end of the Transpolar Drift between 2001 and 2020. Overall, we see a more than 20 % thinning of modal ice thickness since 2001. A comparison with first preliminary results from the international Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) shows that the modal summer thickness of the MOSAiC floe and its wider vicinity are consistent with measurements from previous years. By combining this unique time series with the Lagrangian sea ice tracking tool, ICETrack, and a simple thermodynamic sea ice growth model, we link the observed interannual ice thickness variability north of Fram Strait to increased drift speeds along the Transpolar Drift and the consequential variations in sea ice age and number of freezing degree days. We also show that the increased influence of upward-directed ocean heat flux in the eastern marginal ice zones, termed Atlantification, is not only responsible for sea ice thinning in and around the Laptev Sea, but also that the induced thickness anomalies persist beyond the Russian shelves and are potentially still measurable at the end of the Transpolar Drift after more than a year. With a tendency towards an even faster Transpolar Drift, winter sea ice growth will have less time to compensate the impact of Atlantification on sea ice growth in the eastern marginal ice zone, which will increasingly be felt in other parts of the sea ice covered Arctic.


2019 ◽  
Vol 1 ◽  
pp. 1-1
Author(s):  
Dawei Gui ◽  
Xiaoping Pang ◽  
Ruibo Lei ◽  
Xi Zhao ◽  
Jia Wang

<p><strong>Abstract.</strong> Increasing amounts of evidence have proven Arctic sea ice is undergoing remarkable loss. On the bright side, the Arctic sea routes are becoming increasingly accessible. In this study, the NSIDC product of sea ice motion was applied to reconstruct the northward speed of sea ice to obtain the kinematic features of the sea ice in the Arctic outflow region which specially referred to the Fram Strait and to the north of the Northeast Passage (NEP).</p><p>In the Arctic outflow region, the average southward displacement of sea ice in 2007&amp;ndash;2014 (1511&amp;thinsp;km) was more than twice the average prior to 2007 (617&amp;thinsp;km), which indicated continuous enhancement of the Transpolar Drift Stream (TDS) in comparison with previous years. In the regions to the north of the NEP, the long-term trend of northward sea ice speed in the Kara sector was +0.04&amp;thinsp;cm&amp;thinsp;s<sup>&amp;minus;1</sup>&amp;thinsp;year<sup>&amp;minus;1</sup> in spring. A significant statistical relationship was found between the NEP open period and the northward speed of the sea ice to the north of the NEP. The offshore advection of sea ice could account for the opening of sea routes by 33% and 15% in the Kara and Laptev sectors, respectively.</p><p>The atmospheric circulation indices across the TDS, i.e., the Central Arctic Index (CAI), presented more significant correlation than for the Arctic atmospheric Dipole Anomaly index with the open period of the NEP, and the CAI could explain the southward displacement of sea ice toward Fram Strait by more than 45%. The impact from the summer positive CAI reinforces the thinning and mechanical weakening of the sea ice in the NEP region, which promoted the navigability of the NEP.</p>


Sign in / Sign up

Export Citation Format

Share Document