scholarly journals Kelvin-Helmholtz Instability Associated With Reconnection and Ultra Low Frequency Waves at the Ground: A Case Study

2021 ◽  
Vol 9 ◽  
Author(s):  
E. A. Kronberg ◽  
J. Gorman ◽  
K. Nykyri ◽  
A. G. Smirnov ◽  
J. W. Gjerloev ◽  
...  

The Kelvin-Helmholtz instability (KHI) and its effects relating to the transfer of energy and mass from the solar wind into the magnetosphere remain an important focus of magnetospheric physics. One such effect is the generation of Pc4-Pc5 ultra low frequency (ULF) waves (periods of 45–600 s). On July 3, 2007 at ∼ 0500 magnetic local time the Cluster space mission encountered Pc4 frequency Kelvin-Helmholtz waves (KHWs) at the high latitude magnetopause with signatures of persistent vortices. Such signatures included bipolar fluctuations of the magnetic field normal component associated with a total pressure increase and rapid change in density at vortex edges; oscillations of magnetosheath and magnetospheric plasma populations; existence of fast-moving, low-density, mixed plasma; quasi-periodic oscillations of the boundary normal and an anti-phase relation between the normal and parallel components of the boundary velocity. The event occurred during a period of southward polarity of the interplanetary magnetic field according to the OMNI data and THEMIS observations at the subsolar point. Several of the KHI vortices were associated with reconnection indicated by the Walén relation, the presence of deHoffman-Teller frames, field-aligned ion beams observed together with bipolar fluctuations in the normal magnetic field component, and crescent ion distributions. Global magnetohydrodynamic simulation of the event also resulted in KHWs at the magnetopause. The observed KHWs associated with reconnection coincided with recorded ULF waves at the ground whose properties suggest that they were driven by those waves. Such properties were the location of Cluster’s magnetic foot point, the Pc4 frequency, and the solar wind conditions.

2020 ◽  
Author(s):  
Dongxiao Pan ◽  
Zhonghua Yao

<p>Low frequency quasiperiodic (QP) magnetic field fluctuations are commonly observed in terrestrial and planetary magnetosphere.  At Earth,  these magnetohydrodynamic (MHD) waves are often observed in ultralow frequency (ULF) band (~1 mHz to 1 Hz), which could be generated by solar wind buffeting, Kelvin-Helmholtz instability and/or wave-particle interactions inside the Earth's magnetosphere. At giant planets (Saturn or Jupiter), their enormous magnetospheres often produce QP fluctuations with frequencies lower than the terrestrial ULF waves. In this study, we use Cassini spacecraft observations to analysis waves at period of 10 min to 60 min in Saturnian magnetosphere. We compare wave activities during different solar activities.</p>


2020 ◽  
Author(s):  
Harry Manners ◽  
Adam Masters

<p>The magnetosphere of Jupiter is the largest planetary magnetosphere in the solar system, and plays host to internal dynamics that remain, in many ways, mysterious. Prominent among these mysteries are the ultra-low-frequency (<strong>ULF</strong>) pulses ubiquitous in this system. Pulsations in the electromagnetic emissions, magnetic field and flux of energetic particles have been observed for decades, with little to indicate the source mechanism. While ULF waves have been observed in the magnetospheres of all the magnetized planets, the magnetospheric environment at Jupiter seems particularly conducive to the emergence of ULF waves over a wide range of periods (1-100+ minutes). This is mainly due to the high variability of the system on a global scale: internal plasma sources and a powerful intrinsic magnetic field produce a highly-compressible magnetospheric cavity, which can be reduced to a size significantly smaller than its nominal expanded state by variations in the dynamic pressure of the solar wind. Compressive fronts in the solar wind, turbulent surface interactions on the magnetopause and internal plasma processes can also all lead to ULF wave activity inside the magnetosphere.</p><p>To gain the first comprehensive view of ULF waves in the Jovian system, we have performed a heritage survey of magnetic field data measured by six spacecraft that visited the magnetosphere (Galileo, Ulysses, Voyager 1 & 2 and Pioneer 10 & 11). We found several-hundred wave events consisting of wave packets parallel or transverse to the mean magnetic field, interpreted as fast-mode or Alfvénic MHD wave activity, respectively. Parallel and transverse events were often coincident in space and time, which may be evidence of global Alfvénic resonances of the magnetic field known as field-line-resonances. We found that 15-, 30- and 40-minute periods dominate the Jovian ULF wave spectrum, in agreement with the dominant “magic frequencies” often reported in existing literature.</p><p>We will discuss potential driving mechanisms as informed by the results of the heritage survey, how this in turn affects our understanding of energy transfer in the magnetosphere, and potential investigations to be made using data from the JUNO spacecraft. We will also discuss the potential for multiple resonant cavities, and how the resonance modes of the Jovian magnetosphere may differ from those of the other magnetized planets.</p>


2020 ◽  
Author(s):  
Riku Jarvinen ◽  
Esa Kallio ◽  
Tuija I. Pulkkinen

<p>We study the solar wind interaction with Venus and Mercury in a 3-dimensional global hybrid simulation where ions are treated as particles and electrons are a charge-neutralizing fluid. We concentrate on the formation of large-scale ultra-low frequency (ULF) waves in ion foreshocks and their dependence on the solar wind and interplanetary magnetic field conditions. The ion foreshock forms in the upstream region ahead of the quasi-parallel bow shock, where the angle between the shock normal and the magnetic field is smaller than about 45 degrees. The magnetic connection with the bow shock allows backstreaming of the solar wind ions leading to the formation of the ion foreshock. This kind of beam-plasma configuration is a source of free energy for the excitation of plasma waves. The foreshock ULF waves convect downstream with the solar wind flow and encounter the bow shock. We compare the waves between Venus and Mercury, and analyze the coupling of the ULF waves with the planetary ion acceleration at Venus.</p> <p>References:</p> <p>Jarvinen R., Alho M., Kallio E., Pulkkinen T.I., 2020, Oxygen Ion Escape From Venus Is Modulated by Ultra-Low Frequency Waves, Geophys. Res. Lett., 47, 11, doi:10.1029/2020GL087462</p> <p>Jarvinen R., Alho M., Kallio E., Pulkkinen T.I., 2020, Ultra-low frequency waves in the ion foreshock of Mercury: A global hybrid modeling study, Mon. Notices Royal Astron. Soc., 491, 3, 4147-4161, doi:10.1093/mnras/stz3257</p>


2020 ◽  
Author(s):  
Olga Gutynska ◽  
Jaroslav Urbář ◽  
Jana Šafránková ◽  
Zdeněk Němeček

<p>Particle reflection at the bow shock provides a source of free energy to drive local instabilities and turbulence within the foreshock. A variety of low-frequency fluctuations (up to 16 mHz) results from the interactions of back-streaming ions with the incoming solar wind flow. We report observations of low-frequency magnetosonic waves observed during intervals of a radial interplanetary magnetic field in the foreshock. A case study of simultaneous dual THEMIS spacecraft observations of asymmetrical fluctuations in V<sub>y</sub> is complemented by a statistical study of similar solar wind deflections in the foreshock.  Our moment calculations do not include the reflected particles as well as heavier ions, revealed the modulation of a solar wind core and deflection of the solar wind in the foreshock. This effect decreases with the distance from the bow shock. We conclude that large asymmetrical Vy velocity component fluctuations are typical for the foreshock formed by the radial IMF. The asymmetry of fluctuations changes the mean direction of the incoming solar wind flow within the foreshock leading to preconditioning prior to its encounter with the bow shock.</p>


2021 ◽  
Author(s):  
Anna Salohub ◽  
Jana Šafránková ◽  
Zdeněk Němeček

<p>The foreshock is a region filled with a turbulent plasma located upstream the Earth’s bow shock where interplanetary magnetic field (IMF) lines are connected to the bow shock surface. In this region, ultra-low frequency (ULF) waves are generated due to the interaction of the solar wind plasma with particles reflected from the bow shock back into the solar wind. It is assumed that excited waves grow and they are convected through the solar wind/foreshock, thus the inner spacecraft (close to the bow shock) would observe larger wave amplitudes than the outer (far from the bow shock) spacecraft. The paper presents a statistical analysis of excited ULF fluctuations observed simultaneously by two closely separated THEMIS spacecraft orbiting the Moon under a nearly radial IMF. We found that ULF fluctuations (in the plasma rest frame) can be characterized as a mixture of transverse and compressional modes with different properties at both locations. We discuss the growth and/or damping of ULF waves during their propagation.</p>


2021 ◽  
Author(s):  
Harlan Spence ◽  
Kristopher Klein ◽  
HelioSwarm Science Team

<p>Recently selected for phase A study for NASA’s Heliophysics MidEx Announcement of Opportunity, the HelioSwarm Observatory proposes to transform our understanding of the physics of turbulence in space and astrophysical plasmas by deploying nine spacecraft to measure the local plasma and magnetic field conditions at many points, with separations between the spacecraft spanning MHD and ion scales.  HelioSwarm resolves the transfer and dissipation of turbulent energy in weakly-collisional magnetized plasmas with a novel configuration of spacecraft in the solar wind. These simultaneous multi-point, multi-scale measurements of space plasmas allow us to reach closure on two science goals comprised of six science objectives: (1) reveal how turbulent energy is transferred in the most probable, undisturbed solar wind plasma and distributed as a function of scale and time; (2) reveal how this turbulent cascade of energy varies with the background magnetic field and plasma parameters in more extreme solar wind environments; (3) quantify the transfer of turbulent energy between fields, flows, and ion heat; (4) identify thermodynamic impacts of intermittent structures on ion distributions; (5) determine how solar wind turbulence affects and is affected by large-scale solar wind structures; and (6) determine how strongly driven turbulence differs from that in the undisturbed solar wind. </p>


2021 ◽  
Author(s):  
Vertti Tarvus ◽  
Lucile Turc ◽  
Markus Battarbee ◽  
Jonas Suni ◽  
Xóchitl Blanco-Cano ◽  
...  

Abstract. The foreshock located upstream of Earth's bow shock hosts a wide variety of phenomena related to the reflection of solar wind particles from the bow shock and the subsequent formation of ultra-low frequency (ULF) waves. In this work, we investigate foreshock cavitons, which are transient structures resulting from the non-linear evolution of ULF waves, and spontaneous hot flow anomalies (SHFAs), which evolve from cavitons as they accumulate suprathermal ions while being carried to the bow shock by the solar wind. Using the global hybrid-Vlasov simulation model Vlasiator, we have conducted a statistical study in which we track the motion of individual cavitons and SHFAs in order to examine their properties and evolution. In our simulation run where the interplanetary magnetic field (IMF) is directed at a sunward-southward angle of 45 degrees, continuous formation of cavitons is found up to ~ 11 Earth radii (RE) from the bow shock (along the IMF direction), and caviton-to-SHFA evolution takes place within ~ 2 RE from the shock. A third of the cavitons in our run evolve into SHFAs, and we find a comparable amount of SHFAs forming independently near the bow shock. We compare the properties of cavitons and SHFAs to prior spacecraft observations and simulations, finding good agreement. We also investigate the variation of the properties as a function of position in the foreshock, showing that the transients close to the bow shock are associated with larger depletions in the plasma density and magnetic field magnitude, along with larger increases in the plasma temperature and the level of bulk flow deflection. Our measurements of the propagation velocities of cavitons and SHFAs agree with earlier studies, showing that the transients propagate sunward in the solar wind rest frame. We show that SHFAs have a greater solar wind rest frame propagation speed than cavitons, which is related to an increase in the magnetosonic speed near the bow shock.


2021 ◽  
Vol 39 (5) ◽  
pp. 911-928
Author(s):  
Vertti Tarvus ◽  
Lucile Turc ◽  
Markus Battarbee ◽  
Jonas Suni ◽  
Xóchitl Blanco-Cano ◽  
...  

Abstract. The foreshock located upstream of Earth's bow shock hosts a wide variety of phenomena related to the reflection of solar wind particles from the bow shock and the subsequent formation of ultra-low-frequency (ULF) waves. In this work, we investigate foreshock cavitons, which are transient structures resulting from the non-linear evolution of ULF waves, and spontaneous hot flow anomalies (SHFAs), which are thought to evolve from cavitons as they accumulate suprathermal ions while being carried to the bow shock by the solar wind. Using the global hybrid-Vlasov simulation model Vlasiator, we have conducted a statistical study in which we track the motion of individual cavitons and SHFAs in order to examine their properties and evolution. In our simulation run where the interplanetary magnetic field (IMF) is directed at a sunward–southward angle of 45∘, continuous formation of cavitons is found up to ∼11 Earth radii (RE) from the bow shock (along the IMF direction), and caviton-to-SHFA evolution takes place within ∼2 RE from the shock. A third of the cavitons in our run evolve into SHFAs, and we find a comparable amount of SHFAs forming independently near the bow shock. We compare the properties of cavitons and SHFAs to prior spacecraft observations and simulations, finding good agreement. We also investigate the variation of the properties as a function of position in the foreshock, showing that transients close to the bow shock are associated with larger depletions in the plasma density and magnetic field magnitude, along with larger increases in the plasma temperature and the level of bulk flow deflection. Our measurements of the propagation velocities of cavitons and SHFAs agree with earlier studies, showing that the transients propagate sunward in the solar wind rest frame. We show that SHFAs have a greater solar wind rest frame propagation speed than cavitons, which is related to an increase in the magnetosonic speed near the bow shock.


2021 ◽  
Author(s):  
Vertti Tarvus ◽  
Lucile Turc ◽  
Markus Battarbee ◽  
Jonas Suni ◽  
Xóchitl Blanco-Cano ◽  
...  

<p>Foreshock cavitons are transient structures forming in Earth's foreshock as a result of non-linear interaction of ultra-low frequency waves. Cavitons are characterised by simultaneous density and magnetic field depressions with sizes of the order of 1 Earth radius. These transients are advected by the solar wind towards the bow shock, where they may accumulate shock-reflected suprathermal ions and become spontaneous hot flow anomalies (SHFAs), which are characterised by an enhanced temperature and a perturbed bulk flow inside them.<br>    Both spacecraft measurements and hybrid simulations have shown that while cavitons and SHFAs are carried towards the bow shock by the solar wind, their motion in the solar wind rest frame is directed upstream. In this work, we have made a statistical analysis of the propagation properties of cavitons and SHFAs using Vlasiator, a hybrid-Vlasov simulation model. In agreement with previous studies, we find the transients propagating upstream in the solar wind rest frame. Our results show that the solar wind rest frame motion of cavitons is aligned with the direction of the interplanetary magnetic field, while the motion of SHFAs deviates from this direction. We find that SHFAs have a faster solar wind rest frame propagation speed than cavitons, which is due to an increase in the sound speed near the bow shock, affecting the speed of the waves in the foreshock.</p>


2019 ◽  
Vol 627 ◽  
pp. A96 ◽  
Author(s):  
R. Bruno ◽  
D. Telloni ◽  
L. Sorriso-Valvo ◽  
R. Marino ◽  
R. De Marco ◽  
...  

Fluctuations of solar wind magnetic field and plasma parameters exhibit a typical turbulence power spectrum with a spectral index ranging between ∼5/3 and ∼3/2. In particular, at 1 AU, the magnetic field spectrum, observed within fast corotating streams, also shows a clear steepening for frequencies higher than the typical proton scales, of the order of ∼3 × 10−1 Hz, and a flattening towards 1/f at frequencies lower than ∼10−3 Hz. However, the current literature reports observations of the low-frequency break only for fast streams. Slow streams, as observed to date, have not shown a clear break, and this has commonly been attributed to slow wind intervals not being long enough. Actually, because of the longer transit time from the Sun, slow wind turbulence would be older and the frequency break would be shifted to lower frequencies with respect to fast wind. Based on this hypothesis, we performed a careful search for long-lasting slow wind intervals throughout 12 years of Wind satellite measurements. Our search, based on stringent requirements not only on wind speed but also on the level of magnetic compressibility and Alfvénicity of the turbulent fluctuations, yielded 48 slow wind streams lasting longer than 7 days. This result allowed us to extend our study to frequencies sufficiently low and, for the first time in the literature, we are able to show that the 1/f magnetic spectral scaling is also present in the slow solar wind, provided the interval is long enough. However, this is not the case for the slow wind velocity spectrum, which keeps the typical Kolmogorov scaling throughout the analysed frequency range. After ruling out the possible role of compressibility and Alfvénicity for the 1/f scaling, a possible explanation in terms of magnetic amplitude saturation, as recently proposed in the literature, is suggested.


Sign in / Sign up

Export Citation Format

Share Document