scholarly journals The Pulsating Magnetosphere at Jupiter

Author(s):  
Harry Manners ◽  
Adam Masters

<p>The magnetosphere of Jupiter is the largest planetary magnetosphere in the solar system, and plays host to internal dynamics that remain, in many ways, mysterious. Prominent among these mysteries are the ultra-low-frequency (<strong>ULF</strong>) pulses ubiquitous in this system. Pulsations in the electromagnetic emissions, magnetic field and flux of energetic particles have been observed for decades, with little to indicate the source mechanism. While ULF waves have been observed in the magnetospheres of all the magnetized planets, the magnetospheric environment at Jupiter seems particularly conducive to the emergence of ULF waves over a wide range of periods (1-100+ minutes). This is mainly due to the high variability of the system on a global scale: internal plasma sources and a powerful intrinsic magnetic field produce a highly-compressible magnetospheric cavity, which can be reduced to a size significantly smaller than its nominal expanded state by variations in the dynamic pressure of the solar wind. Compressive fronts in the solar wind, turbulent surface interactions on the magnetopause and internal plasma processes can also all lead to ULF wave activity inside the magnetosphere.</p><p>To gain the first comprehensive view of ULF waves in the Jovian system, we have performed a heritage survey of magnetic field data measured by six spacecraft that visited the magnetosphere (Galileo, Ulysses, Voyager 1 & 2 and Pioneer 10 & 11). We found several-hundred wave events consisting of wave packets parallel or transverse to the mean magnetic field, interpreted as fast-mode or Alfvénic MHD wave activity, respectively. Parallel and transverse events were often coincident in space and time, which may be evidence of global Alfvénic resonances of the magnetic field known as field-line-resonances. We found that 15-, 30- and 40-minute periods dominate the Jovian ULF wave spectrum, in agreement with the dominant “magic frequencies” often reported in existing literature.</p><p>We will discuss potential driving mechanisms as informed by the results of the heritage survey, how this in turn affects our understanding of energy transfer in the magnetosphere, and potential investigations to be made using data from the JUNO spacecraft. We will also discuss the potential for multiple resonant cavities, and how the resonance modes of the Jovian magnetosphere may differ from those of the other magnetized planets.</p>

2021 ◽  
Vol 9 ◽  
Author(s):  
Georgios Anagnostopoulos

The ultra low frequency (ULF) electromagnetic (EM) wave activity usually recorded on Earth’s ground has been found to depend on various types of space weather. In addition ULF waves observed before an earthquake have been hypothesized to be a result of geotectonic processes. In this study we elaborate for the first time the origin of sub-ULF (<1 msec) magnetic field waves before an earthquake (Chi-Chi/Taiwan, 20.9.1999) by comparing simultaneously obtained measurements in the interplanetary space (ACE satellite) and on the Earth’s ground (Taiwan). The most striking result of our data analysis, during a period of 7 weeks, is that the detection of four groups of sub-ULF waves in Taiwan coincide in time with the quasi-periodic detection of two solar wind streams by the satellite ACE with approximately the solar rotation period (∼28 days). The high speed solar wind streams (HSSs) in the interplanetary space were accompanied by sub-ULF Alfvén wave activity, quasi-periodic southward IMF and solar wind density perturbations, which are known as triggering agents of magnetic storm activity. The four HSSs were followed by long lasting decreases in the magnetic field in Taiwan. The whole data set examined in this study strongly suggest that the subULF magnetic field waves observed in Taiwan before the Chi-Chi 1999 earthquake is a normal consequence of the incident of HSSs to the magnetosphere. We provide some observational evidence that the sub-ULF electromagnetic radiation on the Earth was most probably a partner to (not a result of) geotectonic processes preparing the Taiwan 1999 earthquake.


2021 ◽  
Vol 44 ◽  
pp. 12-15
Author(s):  
I.V. Despirak ◽  
◽  
N.G. Kleimenova ◽  
A.A. Lubchich ◽  
P.V. Setsko ◽  
...  

For this analysis, we selected the supersubstorm (SSS) occurred during the strong magnetic storm on 28 May 2011 (SYM/H~100 nT). The ground-based magnetic effects of SSS have been studied basing on the data from the global SuperMAG, INTERMAGNET and IMAGE magnetometer networks, as well as on the magnetic measurements by the ionospheric satellite AMPERE system. According to the SML- index behavior, the SSS event maximum was identified at ~09:00 UT on 28 May 2011 (SML= ~-2600 nT). The SSS occurred during the passage of the magnetic cloud in the solar wind. Before the SSS, the BZ component of the Interplanetary Magnetic Field (IMF) was negative, the IMF BY component was positive, and the local jump in the solar wind dynamic pressure was registered. We found that the SSS developed in the magnetosphere in the global scale. A strong westward electrojet was observed at auroral latitudes from the evening side to the dayside. In contrast to the typical scenario of a classical substorm, a very intense eastward electrojet was detected in the afternoon-evening sector. That may be a result of the formation of an additional partial ring current during the supersubstorm.


2013 ◽  
Vol 31 (12) ◽  
pp. 2163-2178 ◽  
Author(s):  
P. Kajdič ◽  
X. Blanco-Cano ◽  
N. Omidi ◽  
K. Meziane ◽  
C. T. Russell ◽  
...  

Abstract. In this work we perform a statistical analysis of 92 foreshock cavitons observed with the Cluster spacecraft 1 during the period 2001–2006. We analyze time intervals during which the spacecraft was located in the Earth's foreshock with durations longer than 10 min. Together these amount to ~ 50 days. The cavitons are transient structures in the Earth's foreshock. Their main signatures in the data include simultaneous depletions of the magnetic field intensity and plasma density, which are surrounded by a rim of enhanced values of these two quantities. Cavitons form due to nonlinear interaction of transverse and compressive ultra-low frequency (ULF) waves and are therefore always surrounded by intense compressive ULF fluctuations. They are carried by the solar wind towards the bow shock. This work represents the first systematic study of a large sample of foreshock cavitons. We find that cavitons appear for a wide range of solar wind and interplanetary magnetic field conditions and are therefore a common feature upstream of Earth's quasi-parallel bow shock with an average occurrence rate of ~ 2 events per day. We also discuss their observational properties in the context of other known upstream phenomena and show that the cavitons are a distinct structure in the foreshock.


2021 ◽  
Author(s):  
Sarah Bentley ◽  
Rhys Thompson ◽  
Clare Watt ◽  
Jennifer Stout ◽  
Teo Bloch

<p>We present and analyse a freely-available model of the power found in ultra-low frequency waves (ULF, 1-15 mHz) throughout Earth’s magnetosphere. Predictions can be used to test our understanding of magnetospheric dynamics, while accurate models of these waves are required to characterise the energisation and transport of radiation belt electrons in space weather.</p><p>This model is constructed using decision tree ensembles, which iteratively partition the given parameter space into variable size bins. Wave power is determined by physical driving parameters (e.g. solar wind properties) and spatial parameters of interest (magnetic local time MLT, magnetic latitude and frequency). As a parameterised model, there is no guarantee that individual physical processes can be extracted and analysed. However, by iteratively considering smaller scale driving processes, we identify predominant wave drivers and find that solar wind driving of ULF waves are moderated by internal magnetospheric conditions. Significant remaining uncertainty occurs with mild solar wind driving, suggesting that the internal state of the magnetosphere should be included in future.</p><p>Models such as this may be used to create global magnetospheric “maps” of predicted wave power which may then be used to create radial diffusion coefficients determining the effect of ULF waves on radiation belt electrons.</p>


2020 ◽  
Author(s):  
Riku Jarvinen ◽  
Esa Kallio ◽  
Tuija I. Pulkkinen

<p>We study the solar wind interaction with Venus and Mercury in a 3-dimensional global hybrid simulation where ions are treated as particles and electrons are a charge-neutralizing fluid. We concentrate on the formation of large-scale ultra-low frequency (ULF) waves in ion foreshocks and their dependence on the solar wind and interplanetary magnetic field conditions. The ion foreshock forms in the upstream region ahead of the quasi-parallel bow shock, where the angle between the shock normal and the magnetic field is smaller than about 45 degrees. The magnetic connection with the bow shock allows backstreaming of the solar wind ions leading to the formation of the ion foreshock. This kind of beam-plasma configuration is a source of free energy for the excitation of plasma waves. The foreshock ULF waves convect downstream with the solar wind flow and encounter the bow shock. We compare the waves between Venus and Mercury, and analyze the coupling of the ULF waves with the planetary ion acceleration at Venus.</p> <p>References:</p> <p>Jarvinen R., Alho M., Kallio E., Pulkkinen T.I., 2020, Oxygen Ion Escape From Venus Is Modulated by Ultra-Low Frequency Waves, Geophys. Res. Lett., 47, 11, doi:10.1029/2020GL087462</p> <p>Jarvinen R., Alho M., Kallio E., Pulkkinen T.I., 2020, Ultra-low frequency waves in the ion foreshock of Mercury: A global hybrid modeling study, Mon. Notices Royal Astron. Soc., 491, 3, 4147-4161, doi:10.1093/mnras/stz3257</p>


2012 ◽  
Vol 30 (12) ◽  
pp. 1751-1768 ◽  
Author(s):  
G. Balasis ◽  
I. A. Daglis ◽  
E. Zesta ◽  
C. Papadimitriou ◽  
M. Georgiou ◽  
...  

Abstract. We examine data from a topside ionosphere and two magnetospheric missions (CHAMP, Cluster and Geotail) for signatures of ultra low frequency (ULF) waves during the exceptional 2003 Halloween geospace magnetic storm, when Dst reached ~−380 nT. We use a suite of wavelet-based algorithms, which are a subset of a tool that is being developed for the analysis of multi-instrument multi-satellite and ground-based observations to identify ULF waves and investigate their properties. Starting from the region of topside ionosphere, we first present three clear and strong signatures of Pc3 ULF wave activity (frequency 15–100 mHz) in CHAMP tracks. We then expand these three time intervals for purposes of comparison between CHAMP, Cluster and Geotail Pc3 observations but also to be able to search for Pc4–5 wave signatures (frequency 1–10 mHz) into Cluster and Geotail measurements in order to have a more complete picture of the ULF wave occurrence during the storm. Due to the fast motion through field lines in a low Earth orbit (LEO) we are able to reliably detect Pc3 (but not Pc4–5) waves from CHAMP. This is the first time, to our knowledge, that ULF wave observations from a topside ionosphere mission are compared to ULF wave observations from magnetospheric missions. Our study provides evidence for the occurrence of a number of prominent ULF wave events in the Pc3 and Pc4–5 bands during the storm and offers a platform to study the wave evolution from high altitudes to LEO. The ULF wave analysis methods presented here can be applied to observations from the upcoming Swarm multi-satellite mission of ESA, which is anticipated to enable joint studies with the Cluster mission.


2021 ◽  
Author(s):  
Primož Kajdič ◽  
Yann Pfau-Kempf ◽  
Lucile Turc ◽  
Andrew Dimmock ◽  
Minna Palmroth

<p>We study the interaction of upstream ultra-low frequency (ULF) waves with collisionless shocks by analyzing the outputs of eleven 2.5D local hybrid simulation models. Our simulated shocks have Alfvénic Mach numbers between 4.29-7.42 and their θ<sub>BN</sub> angles are 15º, 30º, 45º and 50º. Thus all are quasi-parallel or marginally quasi-perpendicular shocks. Upstream of all of the shocks the ULF wave foreshock develops. It is populated by transverse and compressive ULF magnetic field fluctuations that propagate upstream in the rest frame of upstream plasma. We show that the properties of the upstream waves reflect on the properties of the shock ripples. We also show that due to these ripples, as different portions of upstream waves reach the shocks, they encounter shock sections with different properties, such as the downstream magnetic field and the orientation of the local shock normals. This means that the waves are not simply transmitted into the downstream region but are heavily processed by the shocks. The identity of upstream fluctuations is largely lost, since the downstream fluctuations do not resemble the upstream waves in their shape, waveform extension, orientation nor in their wavelength. However some features are conserved. For example, the Fourier spectra of upstream waves present a bump or flattening at wavelengths corresponding to those of the upstream ULF waves. Most of the corresponding compressive downstream spectra also exhibit these features, while transverse downstream spectra are largely featureless.</p>


2021 ◽  
Vol 9 ◽  
Author(s):  
E. A. Kronberg ◽  
J. Gorman ◽  
K. Nykyri ◽  
A. G. Smirnov ◽  
J. W. Gjerloev ◽  
...  

The Kelvin-Helmholtz instability (KHI) and its effects relating to the transfer of energy and mass from the solar wind into the magnetosphere remain an important focus of magnetospheric physics. One such effect is the generation of Pc4-Pc5 ultra low frequency (ULF) waves (periods of 45–600 s). On July 3, 2007 at ∼ 0500 magnetic local time the Cluster space mission encountered Pc4 frequency Kelvin-Helmholtz waves (KHWs) at the high latitude magnetopause with signatures of persistent vortices. Such signatures included bipolar fluctuations of the magnetic field normal component associated with a total pressure increase and rapid change in density at vortex edges; oscillations of magnetosheath and magnetospheric plasma populations; existence of fast-moving, low-density, mixed plasma; quasi-periodic oscillations of the boundary normal and an anti-phase relation between the normal and parallel components of the boundary velocity. The event occurred during a period of southward polarity of the interplanetary magnetic field according to the OMNI data and THEMIS observations at the subsolar point. Several of the KHI vortices were associated with reconnection indicated by the Walén relation, the presence of deHoffman-Teller frames, field-aligned ion beams observed together with bipolar fluctuations in the normal magnetic field component, and crescent ion distributions. Global magnetohydrodynamic simulation of the event also resulted in KHWs at the magnetopause. The observed KHWs associated with reconnection coincided with recorded ULF waves at the ground whose properties suggest that they were driven by those waves. Such properties were the location of Cluster’s magnetic foot point, the Pc4 frequency, and the solar wind conditions.


2010 ◽  
Vol 28 (9) ◽  
pp. 1723-1735
Author(s):  
J. D. Borderick ◽  
T. K. Yeoman ◽  
C. L. Waters ◽  
D. M. Wright

Abstract. A combination of an HF Doppler sounder, a network of ground magnetometers, upstream solar wind monitors and a numerical model is used to examine the temporal evolution of an Ultra Low Frequency (ULF) wave. The event occurred on 16 April 1998 and followed a solar wind density and pressure increase seen in the upstream ACE spacecraft data. The magnetometer and HF Doppler sounder data show that the event develops into a low-m (−6) field line resonance. HF signals that propagate via the ionosphere exhibit Doppler shifts due to a number of processes that give rise to a time-dependent phase path. The ULF electric and magnetic fields are calculated by a one-dimensional model which calculates the wave propagation from the magnetosphere, through the ionosphere to the ground with an oblique magnetic field. These values are then used to determine a model HF Doppler shift which is subsequently compared to HF Doppler observations. The ULF magnetic field at the ground and Doppler observations are then used to provide model inputs at various points throughout the event. We find evidence that the wave mode evolved from a mixture of fast and Alfvén modes at the beginning of the event to an almost purely shear Alfvénic mode after 6 wavecycles (33 min).


2020 ◽  
Author(s):  
Dongxiao Pan ◽  
Zhonghua Yao

<p>Low frequency quasiperiodic (QP) magnetic field fluctuations are commonly observed in terrestrial and planetary magnetosphere.  At Earth,  these magnetohydrodynamic (MHD) waves are often observed in ultralow frequency (ULF) band (~1 mHz to 1 Hz), which could be generated by solar wind buffeting, Kelvin-Helmholtz instability and/or wave-particle interactions inside the Earth's magnetosphere. At giant planets (Saturn or Jupiter), their enormous magnetospheres often produce QP fluctuations with frequencies lower than the terrestrial ULF waves. In this study, we use Cassini spacecraft observations to analysis waves at period of 10 min to 60 min in Saturnian magnetosphere. We compare wave activities during different solar activities.</p>


Sign in / Sign up

Export Citation Format

Share Document