scholarly journals The Transport Properties of Quasi–One-Dimensional Ba3Co2O6(CO3)0.7

2021 ◽  
Vol 9 ◽  
Author(s):  
Minnan Chen ◽  
Jiangtao Wu ◽  
Qing Huang ◽  
Jinlong Jiao ◽  
Zhiling Dun ◽  
...  

We have performed combined elastic neutron diffuse, electrical transport, specific heat, and thermal conductivity measurements on the quasi–one-dimensional Ba3Co2O6(CO3)0.7 single crystal to characterize its transport properties. A modulated superstructure of polyatomic CO32− is formed, which not only interferes the electronic properties of this compound, but also reduces the thermal conductivity along the c-axis. Furthermore, a large magnetic entropy is observed to be contributed to the heat conduction. Our investigations reveal the influence of both structural and magnetic effects on its transport properties and suggest a theoretical improvement on the thermoelectric materials by building up superlattice with conducting ionic group.

2003 ◽  
Vol 788 ◽  
Author(s):  
Diana-Andra Borca-Tasciuc ◽  
Yann LeBon ◽  
Claire Nanot ◽  
Gang Chen ◽  
Theodorian Borca-Tasciuc ◽  
...  

ABSTRACTThis work reports temperature dependent thermal and electrical properties characterization of long (mm size) single-walled carbon nanotube strands. Electrical properties are measured using a 4-probe method. Thermal conductivity and specific heat capacity are determined using an AC driven, self-heating method. Normalized values of resistivity, thermal conductivity, specific heat, thermal diffusivity, and the temperature coefficient of resistance are reported. The trends observed in the temperature dependent properties are comparable with previously published data on multi-walled carbon nanotube strands measured with a similar technique.


2008 ◽  
Author(s):  
E. S. Landry ◽  
A. J. H. McGaughey

Si/Si1−xGex superlattices are promising candidates for thermoelectric energy conversion applications [1, 2], as the phonon transport through them can be inhibited while maintaining desirable electrical transport properties. No comprehensive experimental study has been performed to map the thermal conductivity design space accessible by Si/Ge nanocomposites. By using atomistic modeling tools, interesting areas of the design space can be identified and then further explored experimentally.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Jae-Yeol Hwang ◽  
Eun Sung Kim ◽  
Syed Waqar Hasan ◽  
Soon-Mok Choi ◽  
Kyu Hyoung Lee ◽  
...  

Highly dense pore structure was generated by simple sequential routes using NaCl and PVA as porogens in conventional PbTe thermoelectric materials, and the effect of pores on thermal transport properties was investigated. Compared with the pristine PbTe, the lattice thermal conductivity values of pore-generated PbTe polycrystalline bulks were significantly reduced due to the enhanced phonon scattering by mismatched phonon modes in the presence of pores (200 nm–2 μm) in the PbTe matrix. We obtained extremely low lattice thermal conductivity (~0.56 W m−1 K−1at 773 K) in pore-embedded PbTe bulk after sonication for the elimination of NaCl residue.


2013 ◽  
Vol 802 ◽  
pp. 284-288
Author(s):  
Anek Charoenphakdee ◽  
Adul Harnwangmuang ◽  
Tosawat Seetawan ◽  
Chesta Ruttanapun ◽  
Vittaya Amornkitbamrung ◽  
...  

The authors examined the thermal and electrical transport properties of Tl7Sb2 at temperatures ranging from room temperature to 400 K. The crystal system of Tl7Sb2 is cubic with the lattice parameter a = 1.16053 nm and the space group is Im3m. The polycrystalline samples were prepared by melting stoichiometric amounts of thallium and antimony. Although, usually the thermal conductivity of thallium compounds is very low (<1 Wm-1K-1), that of Tl7Sb2 was relatively high (~13 Wm-1K-1 at room temperature). This is because of the large electronic contribution to the thermal conductivity.


2013 ◽  
Vol 209 ◽  
pp. 129-132 ◽  
Author(s):  
Shreya Shah ◽  
Tejal N. Shah ◽  
P.N. Gajjar

The temperature profile, heat flux and thermal conductivity are investigated for the chain length of 67 one-dimensional (1-D) oscillators. FPU-β and FK models are used for interparticle interactions and substrate interactions, respectively. As harmonic chain does not produce temperature gradient along the chain, it is required to introduce anharmonicity in the numerical simulation. The anharmonicity dependent temperature profile, thermal conductivity and heat flux are simulated for different strength of anharmonicity β = 0, 0.1, 0.3, 0.5, 0.7, 0.9 and 1. It is concluded that heat flux obeys J = 0.3947 e0.553β with R2 = 0.9319 and thermal conductivity obeys κ = 0.0276 e0.5559β with R2 = 0.9319.


Sign in / Sign up

Export Citation Format

Share Document