scholarly journals Muscle Fatigue Revisited – Insights From Optically Pumped Magnetometers

2021 ◽  
Vol 12 ◽  
Author(s):  
Davide Sometti ◽  
Lorenzo Semeia ◽  
Sangyeob Baek ◽  
Hui Chen ◽  
Giulia Righetti ◽  
...  

So far, surface electromyography (sEMG) has been the method of choice to detect and evaluate muscle fatigue. However, recent advancements in non-cryogenic quantum sensors, such as optically pumped magnetometers (OPMs), enable interesting possibilities to flexibly record biomagnetic signals. Yet, a magnetomyographic investigation of muscular fatigue is still missing. Here, we simultaneously used sEMG (4 surface electrode) and OPM-based magnetomyography (OPM-MMG, 4 sensors) to detect muscle fatigue during a 3 × 1-min isometric contractions of the left rectus femoris muscle in 7 healthy participants. Both signals exhibited the characteristic spectral compression distinctive for muscle fatigue. OPM-MMG and sEMG slope values, used to quantify the spectral compression of the signals, were positively correlated, displaying similarity between the techniques. Additionally, the analysis of the different components of the magnetic field vector enabled speculations regarding the propagation of the muscle action potentials (MAPs). Altogether these results show the feasibility of the magnetomyographic approach with OPMs and propose a potential alternative to sEMG for the study of muscle fatigue.

2021 ◽  
Author(s):  
Davide Sometti ◽  
Lorenzo Semeia ◽  
Hui Chen ◽  
Juergen Dax ◽  
Cornelius Kronlage ◽  
...  

Muscle fatigue is well characterized electromyographically, nevertheless only information about summed potential differences is detectable. In contrast, recently developed quantum sensors optically pumped magnetometers (OPMs) offer the advantage of recording both the electrical current propagation in the muscle as well as its geometry, by measuring the magnetic field generated by the muscular action potentials. Magnetomyographic investigation of muscle fatigue is still lacking and it is an open question whether fatigue is characterized similarly in magnetomyography (MMG) compared to electromyography (EMG). Herein, we investigated the muscle fatigue during a 3x1-min strong isometric contraction of the rectus femoris muscle of 12 healthy subjects using simultaneous EMG-MMG (4-channel surface EMG and 4 OPM along the rectus femoris muscle). Both EMG and MMG showed the characteristic frequency decrease in the signal magnitude during isometric contraction, which is typical for muscle fatigue. In addition, it was shown that the main part of this frequency decrease seems to occur in the circular component of the magnetic field around the muscle fibers and less longitudinally along the muscle fibers. Overall, these results show not only that magnetomyography is capable of reproducing the electromyographic standards in identifying muscular fatigue, but it also adds relevant information about the spatial characterization of the signal. Therefore, OPM-MMG offers new insights for the study of muscular activity and might serve as a new, supplementary neurophysiological method.


2006 ◽  
Vol 86 (5) ◽  
pp. 656-671 ◽  
Author(s):  
Rafael F Escamilla ◽  
Eric Babb ◽  
Ryan DeWitt ◽  
Patrick Jew ◽  
Peter Kelleher ◽  
...  

Abstract Background and Purpose. Performing nontraditional abdominal exercises with devices such as abdominal straps, the Power Wheel, and the Ab Revolutionizer has been suggested as a way to activate abdominal and extraneous (nonabdominal) musculature as effectively as more traditional abdominal exercises, such as the crunch and bent-knee sit-up. The purpose of this study was to test the effectiveness of traditional and nontraditional abdominal exercises in activating abdominal and extraneous musculature. Subjects. Twenty-one men and women who were healthy and between 23 and 43 years of age were recruited for this study. Methods. Surface electromyography (EMG) was used to assess muscle activity from the upper and lower rectus abdominis, external and internal oblique, rectus femoris, latissimus dorsi, and lumbar paraspinal muscles while each exercise was performed. The EMG data were normalized to maximum voluntary muscle contractions. Differences in muscle activity were assessed by a 1-way, repeated-measures analysis of variance. Results. Upper and lower rectus abdominis, internal oblique, and latissimus dorsi muscle EMG activity were highest for the Power Wheel (pike, knee-up, and roll-out), hanging knee-up with straps, and reverse crunch inclined 30 degrees. External oblique muscle EMG activity was highest for the Power Wheel (pike, knee-up, and roll-out) and hanging knee-up with straps. Rectus femoris muscle EMG activity was highest for the Power Wheel (pike and knee-up), reverse crunch inclined 30 degrees, and bent-knee sit-up. Lumbar paraspinal muscle EMG activity was low and similar among exercises. Discussion and Conclusion. The Power Wheel (pike, knee-up, and roll-out), hanging knee-up with straps, and reverse crunch inclined 30 degrees not only were the most effective exercises in activating abdominal musculature but also were the most effective in activating extraneous musculature. The relatively high rectus femoris muscle activity obtained with the Power Wheel (pike and knee-up), reverse crunch inclined 30 degrees, and bent-knee sit-up may be problematic for some people with low back problems.


2016 ◽  
Vol 32 (3) ◽  
pp. 241-246
Author(s):  
Yusuke Takahashi ◽  
Kyoji Okada ◽  
Akira Saito ◽  
Isao Saito ◽  
Kazuo Kinoshita ◽  
...  

2008 ◽  
Vol 43 (5) ◽  
pp. 470-476 ◽  
Author(s):  
Jason D. Peeler ◽  
Judy E. Anderson

Abstract Context: The modified Thomas test is commonly used in the clinical setting to assess flexibility about the thigh region. Objective: To evaluate the clinical reliability of the modified Thomas test for evaluating the flexibility of the rectus femoris muscle about the knee joint. Design: Descriptive laboratory study using a test-retest design. Setting: Institution-based clinical orthopaedic setting. Patients Or Other Participants: Fifty-seven individuals between the ages of 18 and 45 years with no history of trauma participated. Of those, 54 completed the study. Intervention(s): Three Board-certified athletic therapists with an average of 12.67 years of sport medicine expertise assessed rectus femoris flexibility using pass/fail and goniometer scoring systems. A retest session was completed 7 to 10 days later. Main Outcome Measure(s): Parametric and nonparametric tests were used to compare participants' test-retest results. Results: Chance-corrected κ values (intrarater x¯  =  0.40, 95% confidence interval [CI]  =  0.30, 0.54; interrater x¯  =  0.33, 95% CI  =  0.23, 0.41) indicated generally poor levels of reliability for pass/fail scoring. Intraclass correlation coefficient (ICC) values (intrarater x¯  =  0.67, 95% CI  =  0.55, 0.76; interrater x¯  =  0.50, 95% CI  =  0.40, 0.60) indicated fair to moderate levels of reliability for goniometer data. Measurement error values (standard error of measurement  =  7°, method error  =  6°, and coefficient of variation  =  13%) and Bland-Altman plots (with 95% limits of agreement) further demonstrated the degree of intrarater variance for each examiner when conducting the test. Conclusions: These results call into question the statistical reliability of the modified Thomas test and provide clinicians with important information regarding its reliability limits when used to clinically assess flexibility of the rectus femoris muscle about the knee joint in a physically active population. More research is needed to ascertain the variables that may confound the statistical reliability of this orthopaedic technique.


Sign in / Sign up

Export Citation Format

Share Document