scholarly journals KairoSight: Open-Source Software for the Analysis of Cardiac Optical Data Collected From Multiple Species

2021 ◽  
Vol 12 ◽  
Author(s):  
Blake L. Cooper ◽  
Chris Gloschat ◽  
Luther M. Swift ◽  
Tomas Prudencio ◽  
Damon McCullough ◽  
...  

Cardiac optical mapping, also known as optocardiography, employs parameter-sensitive fluorescence dye(s) to image cardiac tissue and resolve the electrical and calcium oscillations that underly cardiac function. This technique is increasingly being used in conjunction with, or even as a replacement for, traditional electrocardiography. Over the last several decades, optical mapping has matured into a “gold standard” for cardiac research applications, yet the analysis of optical signals can be challenging. Despite the refinement of software tools and algorithms, significant programming expertise is often required to analyze large optical data sets, and data analysis can be laborious and time-consuming. To address this challenge, we developed an accessible, open-source software script that is untethered from any subscription-based programming language. The described software, written in python, is aptly named “KairoSight” in reference to the Greek word for “opportune time” (Kairos) and the ability to “see” voltage and calcium signals acquired from cardiac tissue. To demonstrate analysis features and highlight species differences, we employed experimental datasets collected from mammalian hearts (Langendorff-perfused rat, guinea pig, and swine) dyed with RH237 (transmembrane voltage) and Rhod-2, AM (intracellular calcium), as well as human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) dyed with FluoVolt (membrane potential), and Fluo-4, AM (calcium indicator). We also demonstrate cardiac responsiveness to ryanodine (ryanodine receptor modulator) and isoproterenol (beta-adrenergic agonist) and highlight regional differences after an ablation injury. KairoSight can be employed by both basic and clinical scientists to analyze complex cardiac optical mapping datasets without requiring dedicated computer science expertise or proprietary software.

2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Kimimasa Tobita ◽  
Jason S Tchao ◽  
Jong Kim ◽  
Bo Lin ◽  
Johnny Huard ◽  
...  

We have previously shown that rat skeletal muscle derived stem cells differentiate into an immature cardiomyocyte (CM) phenotype within a 3-dimensional collagen gel engineered cardiac tissue (ECT). Here, we investigated whether human skeletal muscle derived progenitor cells (skMDCs) can differentiate into a CM phenotype within ECT similar to rat skeletal muscle stem cells and compared the human skMDC-ECT properties with ECT from human induced pluripotent stem cell (iPSc) derived CMs. SkMDCs differentiated into a cardiac muscle phenotype within ECT and exhibited spontaneous beating activity as early as culture day 4 and maintained their activity for more than 2 weeks. SkMDC-ECTs stained positive for cardiac specific troponin-T and troponin-I, and were co-localized with fast skeletal muscle myosin heavy chain (sk-fMHC) with a striated muscle pattern similar to fetal myocardium. The iPS-CM-ECTs maintained spontaneous beating activity for more than 2 weeks from ECT construction. iPS-CM stained positive for both cardiac troponin-T and troponin-I, and were also co-localized with sk-fMHC while the striated expression pattern of sk-fMHC was lost similar to post-natal immature myocardium. Connexin-43 protein was expressed in both engineered tissue types, and the expression pattern was similar to immature myocardium. The skMDC-ECT significantly upregulated expression of cardiac-specific genes compared to conventional 2D culture. SkMDC-ECT displayed cardiac muscle like intracellular calcium ion transients. The contractile force measurements demonstrated functional properties of fetal type myocardium in both ECTs. Our results suggest that engineered human cardiac tissue from skeletal muscle progenitor cells mimics developing fetal myocardium while the engineered cardiac tissue from inducible pluripotent stem cell-derived cardiomyocytes mimics post-natal immature myocardium.


2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Ivan Batalov ◽  
Quentin Jallerat ◽  
Adam W Feinberg

The engineering of highly aligned cardiomyocytes into functional heart muscle remains a primary challenge in cardiac tissue engineering. Researchers have shown that micropatterned topography and chemistry as well as mechanical and electrical gradients are all effective at inducing some degree of alignment. However, which approach works best in terms of electromechanical function of the engineered cardiac muscle is still an active area of research. Because formation of new heart muscle in mammals primarily occurs during cardiogenesis, we asked whether the embryonic heart could be used as an instructive template for the design of more effective cardiac tissue engineering scaffolds. Specifically, we hypothesized that micropatterns of fibronectin based on fibronectin fibril size and architecture in embryonic myocardium could improve cardiomyocyte alignment relative to 20 μm wide, 20 μm spaced fibronectin lines, a control pattern used widely in the literature. To test this, we first imaged the fibronectin matrix in the ventricles of day-5 embryonic chick hearts and imaged this in 3D using a multiphoton microscope. This fibronectin structure was then converted into a photomask for photolithography and subsequent patterning of fibronectin onto cover slips using microcontact printing. Samples with the biomimetic patterns or control patterns were seeded with embryonic chick cardiomyocytes, cultured for 3 days and then stained and imaged to visualize the myofibrils. Image analysis to quantify alignment showed that the ability of the biomimetic pattern to induce cardiomyocyte alignment increased with cell density, suggesting that cell-cell interactions play an important role in the formation of aligned embryonic myocardium. Disruption of the cadherins junctions using blocking antibodies confirmed this conclusion. In the future we will use human induced pluripotent stem cell-derived cardiomyocytes to engineer more clinically-relevant human heart muscle and analyze electromechanical function of the tissues including contractile force and action potential propagation.


2016 ◽  
Vol 4 (11) ◽  
pp. 1655-1662 ◽  
Author(s):  
Li Wang ◽  
Xiaoqing Zhang ◽  
Cong Xu ◽  
Hui Liu ◽  
Jianhua Qin

We present a new strategy to produce a thin collagen membrane from porcine tendons and engineered cardiac tissues using hiPSC-derived cardiomyocytes.


Author(s):  
S. Gulberk Ozcebe ◽  
Gokhan Bahcecioglu ◽  
Xiaoshan S. Yue ◽  
Pinar Zorlutuna

AbstractCardiovascular diseases are the leading cause of death worldwide and their occurrence is highly associated with age. However, lack of knowledge in cardiac tissue aging is a major roadblock in devising novel therapies. Here, we studied the effects of cell and cardiac extracellular matrix (ECM) aging on the induced pluripotent stem cell (iPSC)-derived cardiomyocyte cell state, function, as well as response to myocardial infarction (MI)-mimicking stress conditions in vitro. Within 3-weeks, young ECM promoted proliferation and drug responsiveness in young cells, and induced cell cycle re-entry, and protection against stress in the aged cells. Adult ECM improved cardiac function, while aged ECM accelerated the aging phenotype, and impaired cardiac function and stress defense machinery of the cells. In summary, we have gained a comprehensive understanding of cardiac aging and highlighted the importance of cell-ECM interactions. This study is the first to investigate the individual effects of cellular and environmental aging and identify the biochemical changes that occur upon cardiac aging.


2021 ◽  
Author(s):  
Andrew R Gross ◽  
Roberta de Souza Santos ◽  
Dhruv R Sareen

Indirect bioprinting for cell culture requires the use of several technologies and techniques which currently prevent many researchers not specialized in electrical engineering or materials science from accessing these new tools. In this paper, a printer and all necessary associated hardware was developed and tested for the purpose of seeding human induced Pluripotent Stem Cell (iPSC)-derived endothelial cells (iECs) onto all surfaces of a fibrin-gelatin channel. Immature iECs were seeded onto all channel surfaces and completed differentiation along channel walls. All required tools and methods, including engineering drawing, printable files, code, and hand-tool templates, have been provided with sufficient clarity to enable full, open-source replication of all technique employed.


Sign in / Sign up

Export Citation Format

Share Document