scholarly journals The Effect of Spectral Quality on Daily Patterns of Gas Exchange, Biomass Gain, and Water-Use-Efficiency in Tomatoes and Lisianthus: An Assessment of Whole Plant Measurements

2017 ◽  
Vol 8 ◽  
Author(s):  
Jason Lanoue ◽  
Evangelos D. Leonardos ◽  
Xiao Ma ◽  
Bernard Grodzinski
HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 468A-468
Author(s):  
Linda B. Stabler ◽  
Chris A. Martin

Growth and water use efficiency (WUE) of two Southwest landscape plants under various regimes of irrigation frequency was studied in a greenhouse experiment. Red bird of paradise (Caesalpinia pulcherrima L.) and blue palo verde (Cercidium floridum Benth. ex A. Gray) were grown at three levels of irrigation frequency intended to mimic a range of watering practices determined via survey data from the Phoenix, Ariz., metropolitan area. During two irrigation cycles, measurement of mid-day water and osmotic potentials, lysimetric whole-plant transpiration (T), and mid-day shoot gas exchange was made. Irrigation frequency treatments affected Cercidium more than Caesalpinia. Frequent irrigations increased Cercidium shoot length and dry weight. For both species, infrequently irrigated plants showed patterns of osmoregulation in response to drying soil. Transpiration (T) was consistently highest for infrequently irrigated plants. WUE was affected by treatment for Cercidium, but not Caesalpinia. Gas exchange was unrelated to plant growth or T. Instantaneous transpiration efficiency (ITE) was negatively correlated to the ratio of intracellular CO2 to ambient (CICA) in all treatments, suggesting that under well-watered conditions, WUE might be reduced by negative feedback effects of high internal CICA ratios.


Oecologia ◽  
1983 ◽  
Vol 59 (2-3) ◽  
pp. 178-184 ◽  
Author(s):  
M. M. Caldwell ◽  
T. J. Dean ◽  
R. S. Nowak ◽  
R. S. Dzurec ◽  
J. H. Richards

2016 ◽  
Vol 44 (1) ◽  
pp. 250-256 ◽  
Author(s):  
Bianca do Carmo SILVA ◽  
Pêola Reis de SOUZA ◽  
Daihany Moraes CALLEGARI ◽  
Vanessa Ferreira ALVES ◽  
Allan Klynger da Silva LOBATO ◽  
...  

Boron (B) is a very important nutrient required by forest plants; when supplied in adequate amounts, plants can ameliorate the negative effects of abiotic stresses. The objective of this study was to (i) investigate gas exchange, (ii) measure oxidant and antioxidant compounds, and (iii) respond how B supply acts on tolerance mechanism to water deficit in young Schizolobium parahyba plants. The experiment employed a factorial that was entirely randomised, with two boron levels (25 and 250 µmol L-1, simulating conditions of sufficient B and high B, respectively) and two water conditions (control and water deficit). Water deficit induced negative modifications on net photosynthetic rate, stomatal conductance and water use efficiency, while B high promoted intensification of the effects on stomatal conductance and water use efficiency. Hydrogen peroxide and electrolyte leakage of both tissues suffered non-significant increases after B high and when applied water deficit. Ascorbate levels presented increases after water deficit and B high to leaf and root. Our results suggested that the tolerance mechanism to water deficit in young Schizolobium parahyba plants is coupled to increases in total glutathione and ascorbate aiming to control the overproduction of hydrogen peroxide and alleviates the negative consequences on electrolyte leakage and gas exchange. In relation to B supply, this study proved that sufficient level promoted better responses under control and water deficit conditions.


2021 ◽  
Vol 12 ◽  
Author(s):  
Fei Li ◽  
Dagang Guo ◽  
Xiaodong Gao ◽  
Xining Zhao

Elevated atmospheric CO2 concentrations ([eCO2]) and soil water deficits significantly influence gas exchange in plant leaves, affecting the carbon-water cycle in terrestrial ecosystems. However, it remains unclear how the soil water deficit modulates the plant CO2 fertilization effect, especially for gas exchange and leaf-level water use efficiency (WUE). Here, we synthesized a comprehensive dataset including 554 observations from 54 individual studies and quantified the responses for leaf gas exchange induced by e[CO2] under water deficit. Moreover, we investigated the contribution of plant net photosynthesis rate (Pn) and transpiration rates (Tr) toward WUE in water deficit conditions and e[CO2] using graphical vector analysis (GVA). In summary, e[CO2] significantly increased Pn and WUE by 11.9 and 29.3% under well-watered conditions, respectively, whereas the interaction of water deficit and e[CO2] slightly decreased Pn by 8.3%. Plants grown under light in an open environment were stimulated to a greater degree compared with plants grown under a lamp in a closed environment. Meanwhile, water deficit reduced Pn by 40.5 and 37.8%, while increasing WUE by 24.5 and 21.5% under ambient CO2 concentration (a[CO2]) and e[CO2], respectively. The e[CO2]-induced stimulation of WUE was attributed to the common effect of Pn and Tr, whereas a water deficit induced increase in WUE was linked to the decrease in Tr. These results suggested that water deficit lowered the stimulation of e[CO2] induced in plants. Therefore, fumigation conditions that closely mimic field conditions and multi-factorial experiments such as water availability are needed to predict the response of plants to future climate change.


Author(s):  
Ediglécia Pereira Almeida ◽  
Antonio Lucineudo Oliveira Freire ◽  
Ivonete Alves Bakke ◽  
Cheila Deisy Ferreira

Sign in / Sign up

Export Citation Format

Share Document