scholarly journals Genome-Wide Identification and Characterization of Hexokinase Genes in Moso Bamboo (Phyllostachys edulis)

2020 ◽  
Vol 11 ◽  
Author(s):  
Wenqing Zheng ◽  
Yuan Zhang ◽  
Qian Zhang ◽  
Ruihua Wu ◽  
Xinwei Wang ◽  
...  
2016 ◽  
Vol 38 (8) ◽  
pp. 733-745 ◽  
Author(s):  
Tao Wang ◽  
Jin-Jun Yue ◽  
Xue-Ji Wang ◽  
Lu Xu ◽  
Lu-Bin Li ◽  
...  

2016 ◽  
Vol 50 (5) ◽  
pp. 693-704 ◽  
Author(s):  
Z. Huang ◽  
X.-J. Zhong ◽  
J. He ◽  
M.-Y. Jiang ◽  
X.-F. Yu ◽  
...  

2019 ◽  
Vol 20 (17) ◽  
pp. 4309 ◽  
Author(s):  
Ruihua Wu ◽  
Yanrong Shi ◽  
Qian Zhang ◽  
Wenqing Zheng ◽  
Shaoliang Chen ◽  
...  

The largest group of deubiquitinases—ubiquitin-specific proteases (UBPs)—perform extensive and significant roles in plants, including the regulation of development and stress responses. A comprehensive analysis of UBP genes has been performed in Arabidopsis thaliana, but no systematic study has been conducted in moso bamboo (Phyllostachys edulis). In this study, the genome-wide identification, classification, gene, protein, promoter region characterization, divergence time, and expression pattern analyses of the UBPs in moso bamboo were conducted. In total, 48 putative UBP genes were identified in moso bamboo, which were divided into 14 distinct subfamilies in accordance with a comparative phylogenetic analysis using 132 full-length protein sequences, including 48, 27, 25, and 32 sequences from moso bamboo, A. thaliana, rice (Oryza sativa), and purple false brome (Brachypodium distachyon), respectively. Analyses of the evolutionary patterns and divergence levels revealed that the PeUBP genes experienced a duplication event approximately 15 million years ago and that the divergence between PeUBP and OsUBP occurred approximately 27 million years ago. Additionally, several PeUBP members were significantly upregulated under abscisic acid, methyl jasmonate, and salicylic acid treatments, indicating their potential roles in abiotic stress responses in plants.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2620 ◽  
Author(s):  
Zhuo Huang ◽  
Si-Han Jin ◽  
Han-Du Guo ◽  
Xiao-Juan Zhong ◽  
Jiao He ◽  
...  

The proteins containing the TIFY domain belong to a plant-specific family of putative transcription factors and could be divided into four subfamilies: ZML, TIFY, PPD and JAZ. They not only function as key regulators of jasmonate hormonal response, but are also involved in responding to abiotic stress. In this study, we identified 24 TIFY genes (PeTIFYs) in Moso bamboo (Phyllostachys edulis) of Poaceae by analyzing the whole genome sequence. OnePeTIFYbelongs to TIFY subfamily, 18 and five belong to JAZ and ZML subfamilies, respectively. Two equivocal gene models were re-predicted and a putative retrotransposition event was found in a ZML protein. The distribution and conservation of domain or motif, and gene structure were also analyzed. Phylogenetic analysis with TIFY proteins ofArabidopsisandOryza sativaindicated that JAZ subfamily could be further divided to four groups. Evolutionary analysis revealed intragenomic duplication and orthologous relationship betweenP. edulis,O. sativa, andB. distachyon. Calculation of the non-synonymous (Ka) and synonymous (Ks) substitution rates and their ratios indicated that the duplication ofPeTIFYmay have occurred around 16.7 million years ago (MYA), the divergence time of TIFY family among theP. edulis-O. sativa,P. edulis-B. distachyon,andO. sativa-B. distachyonwas approximately 39 MYA, 39 MYA, and 45 MYA, respectively. They appear to have undergone extensive purifying selection during evolution. Transcriptome sequencing revealed that more than 50% ofPeTIFYgenes could be up-regulated by cold and dehydration stresses, and somePeTIFYsalso share homology to know TIFYs involved in abiotic stress tolerance. Our results made insights into TIFY family of Moso bamboo, an economically important non-timber forest resource, and provided candidates for further identification of genes involved in regulating responses to abiotic stress.


Sign in / Sign up

Export Citation Format

Share Document