scholarly journals Co-Overexpression of OsNAR2.1 and OsNRT2.3a Increased Agronomic Nitrogen Use Efficiency in Transgenic Rice Plants

2020 ◽  
Vol 11 ◽  
Author(s):  
Jingguang Chen ◽  
Xiaoqin Liu ◽  
Shuhua Liu ◽  
Xiaoru Fan ◽  
Limei Zhao ◽  
...  
2014 ◽  
Vol 94 (6) ◽  
pp. 1009-1012 ◽  
Author(s):  
David R. Guevara ◽  
Yong-Mei Bi ◽  
Steven J. Rothstein

Guevara, D. R., Bi, Y.-M. and Rothstein, S. J. 2014. Identification of regulatory genes to improve nitrogen use efficiency. Can. J. Plant Sci. 94: 1009–1012. Crop production on soils containing sub-optimal levels of nitrogen (N) severely compromises yield potential. The development of crop varieties displaying high N use efficiency (NUE) is necessary in order to optimize N fertilizer use, and reduce the environmental damage caused by the current excessive application of N in agricultural areas. Genome-wide microarray analysis of rice plants grown under N-limiting environments was performed to identify NUE candidate genes. An early nodulin gene, OsENOD93-1, was strongly up-regulated during plant growth under low N. A constitutive Ubiquitin promoter was used to drive the expression of the OsENOD93-1 gene in transgenic plants to determine the importance of OsENOD93-1 for rice NUE. Transgenic rice plants over-expressing the OsENOD93-1 gene achieved ∼23% and 16% more yield and biomass, respectively, compared with wild-type plants when grown under N-limitation conditions. OsENOD93-1-OX transgenic plants accumulated a higher amount of total amino acids in the roots and xylem sap under N stress, suggesting that OsENOD93-1 plays a role in the transportation of amino acids. Taken together, we demonstrate that an effective way to identify NUE gene candidates involves both transcriptional profiling coupled with a transgenic validation approach to improve complex traits such as NUE in important crops.


Nature Food ◽  
2020 ◽  
Vol 1 (2) ◽  
pp. 134-139 ◽  
Author(s):  
Dong-Kyung Yoon ◽  
Keiki Ishiyama ◽  
Mao Suganami ◽  
Youshi Tazoe ◽  
Mari Watanabe ◽  
...  

Botany ◽  
2013 ◽  
Vol 91 (12) ◽  
pp. 866-883 ◽  
Author(s):  
Perrin H. Beatty ◽  
Rebecka T. Carroll ◽  
Ashok K. Shrawat ◽  
David Guevara ◽  
Allen G. Good

Cereal crop plants have low nitrogen (N) use efficiency, taking up only 30% to 50% of the applied N fertilizers, with the rest having the potential for loss into the environment as N pollution. One way to address this problem is to improve the nitrogen use efficiency of cereal crops using a transgenic approach. We developed alanine aminotransferase overexpressing rice, and we have previously determined that this modification provided an improved nitrogen-use phenotype to the engineered plants. In this study, the transgenic rice were grown in low, medium, and high nitrogen supply, and morphology, plant N levels, enzymatic activity, metabolite levels, and transcriptome response in the roots and shoots at active and maximum tillering at each N level were measured. The transcriptome response was analysed further using MapMan and PageMan to view multiple comparisons. The transgenic rice plants showed improved nitrogen use efficiency at medium and high N supply, but with few significant changes to the amino acid levels or to the transcriptome. The transgenic plants grown in high N showed up-regulation of transcripts associated with photosynthesis, non-melavonate pathway secondary metabolites, protein degradation, and many unknown function transcripts.


Author(s):  
Atmitri Sisharmini ◽  
Aniversari Apriana ◽  
Nurul Khumaida ◽  
Kurniawan Rudi Trijatmiko ◽  
Bambang Sapta Purwoko

Abstract Background Rice can absorb less than 40% of applied nitrogen fertilizer, whereas the unabsorbed nitrogen fertilizer may cause environmental problems, such as algal blooms in freshwater and increased production of nitrous oxide, a greenhouse gas which is 300 times more potent than carbon dioxide. Development of nitrogen use efficient (NUE) rice is essential for more environmentally friendly rice production. Recently, NUE rice has been developed by root-specific expression of alanine aminotransferase (AlaAT) gene from barley, a monocot plant. Therefore, we tested the efficacy of AlaAT gene from cucumber in transgenic rice, aiming to provide evidence for the conservation of AlaAT gene function in monocot and dicot. Results AlaAT gene from cucumber (CsAlaAT2) has been successfully cloned and constructed on pCAMBIA1300 plant expression vectors under the control of tissue-specific promoter OsAnt1. Agrobacterium tumefaciens-mediated transformation of Indonesian rice cv. Fatmawati using this construct produced 14 transgenic events. Pre-screening of T1 seedlings grown in the agar medium containing low nitrogen concentration identified selected events that were superior in the root dry weight. Southern hybridization confirmed the integration of T-DNA in the selected event genomes, each of them carried 1, 2, or 3 T-DNA insertions. Efficacy assay of three lead events in the greenhouse showed that in general transgenic events had increased biomass, tiller number, nitrogen content, and grain yield compared to WT. One event, i.e., FAM13, showed an increase in yield as much as 27.9% and higher plant biomass as much as 27.4% compared to WT under the low nitrogen condition. The lead events also showed higher absorption NUE, agronomical NUE, and grain NUE as compared to WT under the low nitrogen condition. Conclusions The results of this study showed that root-specific expression of cucumber alanine aminotransferase2 gene improved nitrogen use efficiency in transgenic rice, which indicate the conservation of function of this gene in monocot and dicot.


2020 ◽  
Vol 51 (4) ◽  
pp. 1139-1148
Author(s):  
Othman & et al.

The research work was conducted in Izra’a Research station, which affiliated to the General Commission for Scientific Agricultural Research (GCSAR), during the growing seasons (2016 – 2017; 2017 – 2018), in order to evaluate the response of two durum wheat verities (Douma3 and Cham5) and two bread wheat varieties (Douma4 and Cham6) to Conservation Agriculture (CA) as a full package compared with Conventional Tillage system (CT) under rainfed condition using lentils (Variety Edleb3) in the applied crop rotation. The experiment was laid according to split-split RCBD with three replications. The average of biological yield, grain yield,  rainwater use efficiency and nitrogen use efficiency was significantly higher during the first growing season, under conservation agriculture in the presence of crop rotation, in the variety Douma3 (7466 kg. ha-1, and 4162kg. ha-1, 19.006 kg ha-1 mm-1,  39.62 kg N m-2respectively). The two varieties Douma3 and Cham6 are considered more responsive to conservation agriculture system in the southern region of Syria, because they recorded the highest grain yields (2561, 2385 kg ha-1 respectively) compared with the other studied varieties (Cham5 and Douma4) (1951 and 1724 kg ha-1 respectively). They also exhibited the highest values of both rainwater and nitrogen use efficiency.


2015 ◽  
Vol 41 (3) ◽  
pp. 422 ◽  
Author(s):  
Cheng-Xin JU ◽  
Jin TAO ◽  
Xi-Yang QIAN ◽  
Jun-Fei GU ◽  
Bu-Hong ZHAO ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document