scholarly journals Herbivore-Mediated Selection on Floral Display Covaries Nonlinearly With Plant-Antagonistic Interaction Intensity Among Primrose Populations

2021 ◽  
Vol 12 ◽  
Author(s):  
Yun Wu ◽  
Spencer C. H. Barrett ◽  
Xuyu Duan ◽  
Jie Zhang ◽  
Yongpeng Cha ◽  
...  

Quantifying the relations between plant-antagonistic interactions and natural selection among populations is important for predicting how spatial variation in ecological interactions drive adaptive differentiation. Here, we investigate the relations between the opportunity for selection, herbivore-mediated selection, and the intensity of plant-herbivore interaction among 11 populations of the insect-pollinated plant Primula florindae over 2 years. We experimentally quantified herbivore-mediated directional selection on three floral traits (two display and one phenological) within populations and found evidence for herbivore-mediated selection for a later flowering start date and a greater number of flowers per plant. The opportunity for selection and strength of herbivore-mediated selection on number of flowers varied nonlinearly with the intensity of herbivory among populations. These parameters increased and then decreased with increasing intensity of plant-herbivore interactions, defined as an increase in the ratio of herbivore-damaged flowers per individual. Our results provide novel insights into how plant-antagonistic interactions can shape spatial variation in selection on floral traits and contribute toward understanding the mechanistic basis of geographic variation in angiosperm flowers.

2020 ◽  
Author(s):  
Rocío Escobar-Bravo ◽  
Bernardus CJ Schimmel ◽  
Peter GL Klinkhamer ◽  
Matthias Erb

AbstractPlants and herbivores are engaged in intimate antagonistic interactions, with plants trying to mount effective defense responses and herbivores attempting to manipulate plants for their own benefit. Here we report on a new mechanism by which herbivores can facilitate their own development. We show that tomato (Solanum lycopersicum) leaf attack by the American serpentine leafminer Lyriomiza trifolii accelerates the development of conspecific pupae in the soil adjacent to the plant. This pattern was reversed in the jasmonate-signaling deficient tomato mutant def-1. Chemical analyses revealed that L. trifolii leaf attack changes the production of root volatiles in a def-1 dependent manner. Thus, leaf-feeding herbivores can interact with their soil-dwelling pupae, and jasmonates and root volatiles likely play relevant roles in this phenomenon. This study expands the repertoire of plant-herbivore interactions to herbivory-induced modulation of metamorphosis.


2013 ◽  
Vol 10 (78) ◽  
pp. 20120649 ◽  
Author(s):  
Mathias M. Pires ◽  
Paulo R. Guimarães

Interaction intimacy, the degree of biological integration between interacting individuals, shapes the ecology and evolution of species interactions. A major question in ecology is whether interaction intimacy also shapes the way interactions are organized within communities. We combined analyses of network structure and food web models to test the role of interaction intimacy in determining patterns of antagonistic interactions, such as host–parasite, predator–prey and plant–herbivore interactions. Networks describing interactions with low intimacy were more connected, more nested and less modular than high-intimacy networks. Moreover, the performance of the models differed across networks with different levels of intimacy. All models reproduced well low-intimacy networks, whereas the more elaborate models were also capable of reproducing networks depicting interactions with higher levels of intimacy. Our results indicate the key role of interaction intimacy in organizing antagonisms, suggesting that greater interaction intimacy might be associated with greater complexity in the assembly rules shaping ecological networks.


2015 ◽  
Vol 282 (1805) ◽  
pp. 20141351 ◽  
Author(s):  
Jarad P. Mellard ◽  
Claire de Mazancourt ◽  
Michel Loreau

According to recent reviews, the question of how trophic interactions may affect evolutionary responses to climate change remains unanswered. In this modelling study, we explore the evolutionary dynamics of thermal and plant–herbivore interaction traits in a warming environment. We find the herbivore usually reduces adaptation speed and persistence time of the plant by reducing biomass. However, if the plant interaction trait and thermal trait are correlated, herbivores can create different coevolutionary attractors. One attractor has a warmer plant thermal optimum, and the other a colder one compared with the environment. A warmer plant thermal strategy is given a head start under warming, the only case where herbivores can increase plant persistence under warming. Persistence time of the plant under warming is maximal at small or large thermal niche width. This study shows that considering trophic interactions is necessary and feasible for understanding how ecosystems respond to climate change.


2017 ◽  
Vol 106 (1) ◽  
pp. 347-356 ◽  
Author(s):  
Wei Huang ◽  
Elias Zwimpfer ◽  
Maxime R. Hervé ◽  
Zoe Bont ◽  
Matthias Erb

2021 ◽  
Author(s):  
Meret Huber ◽  
Thomas Roder ◽  
Sandra Irmisch ◽  
Alexander Riedel ◽  
Saskia Gablenz ◽  
...  

Gut enzymes can metabolize plant defense metabolites and thereby affect the growth and fitness of insect herbivores. Whether these enzymes also influence herbivore behavior and feeding preference is largely unknown. We studied the metabolization of taraxinic acid β-D-glucopyranosyl ester (TA-G), a sesquiterpene lactone of the common dandelion (Taraxacum officinale) that deters its major root herbivore, the common cockchafer larva (Melolontha melolontha). We demonstrate that TA-G is rapidly deglycosylated and conjugated to glutathione in the insect gut. A broad-spectrum M. melolontha β-glucosidase, Mm_bGlc17, is sufficient and necessary for TA-G deglycosylation. Using plants and insect RNA interference, we show that Mm_bGlc17 reduces TA-G toxicity. Furthermore, Mm_bGlc17 is required for the preference of M. melolontha larvae for TA-G deficient plants. Thus, herbivore metabolism modulates both the toxicity and deterrence of a plant defense metabolite. Our work illustrates the multifacteted roles of insect digestive enzymes as mediators of plant-herbivore interactions.


Sign in / Sign up

Export Citation Format

Share Document