scholarly journals Interaction intimacy organizes networks of antagonistic interactions in different ways

2013 ◽  
Vol 10 (78) ◽  
pp. 20120649 ◽  
Author(s):  
Mathias M. Pires ◽  
Paulo R. Guimarães

Interaction intimacy, the degree of biological integration between interacting individuals, shapes the ecology and evolution of species interactions. A major question in ecology is whether interaction intimacy also shapes the way interactions are organized within communities. We combined analyses of network structure and food web models to test the role of interaction intimacy in determining patterns of antagonistic interactions, such as host–parasite, predator–prey and plant–herbivore interactions. Networks describing interactions with low intimacy were more connected, more nested and less modular than high-intimacy networks. Moreover, the performance of the models differed across networks with different levels of intimacy. All models reproduced well low-intimacy networks, whereas the more elaborate models were also capable of reproducing networks depicting interactions with higher levels of intimacy. Our results indicate the key role of interaction intimacy in organizing antagonisms, suggesting that greater interaction intimacy might be associated with greater complexity in the assembly rules shaping ecological networks.

Author(s):  
Antonios Garas ◽  
Céline Rozenblat ◽  
Frank Schweitzer

The chapter “Economic Specialization and the Nested Bipartite Network of City–Firm Relations” shows how the structure of the city–firm bipartite network has striking similarities with other types of bipartite networks found in ecology. There, nodes represent species, while links represent their interactions. In so-called antagonistic networks, such as food webs, the interaction between species is asymmetric, such as in host–parasite, predator–prey, and plant–herbivore interactions. In so-called mutualistic networks, on the other hand, the interaction between species is symmetric, that is, both species interact in a mutually beneficial way such as, for example, the way that plants interact with their pollinators. This chapter shows that ecological indicators can be used to identify the unbalanced deployment of economic activities; it also provides evidence that the network of city–firm relations contains information about the quality of life in cities.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Bruno A. S. de Medeiros ◽  
Brian D. Farrell

AbstractPlants and their specialized flower visitors provide valuable insights into the evolutionary consequences of species interactions. In particular, antagonistic interactions between insects and plants have often been invoked as a major driver of diversification. Here we use a tropical community of palms and their specialized insect flower visitors to test whether antagonisms lead to higher population divergence. Interactions between palms and the insects visiting their flowers range from brood pollination to florivory and commensalism, with the latter being species that feed on decaying–and presumably undefended–plant tissues. We test the role of insect-host interactions in the early stages of diversification of nine species of beetles sharing host plants and geographical ranges by first delimiting cryptic species and then using models of genetic isolation by environment. The degree to which insect populations are structured by the genetic divergence of plant populations varies. A hierarchical model reveals that this variation is largely uncorrelated with the kind of interaction, showing that antagonistic interactions are not associated with higher genetic differentiation. Other aspects of host use that affect plant-associated insects regardless of the outcomes of their interactions, such as sensory biases, are likely more general drivers of insect population divergence.


2018 ◽  
Vol 11 (04) ◽  
pp. 1850057 ◽  
Author(s):  
Manalebish Debalike Asfaw ◽  
Semu Mitiku Kassa ◽  
Edward M. Lungu

In the interaction between plants and herbivores that live in the same ecosystem, understanding the conditions in which co-existence equilibrium occurs answers a major question in Ecology. In this interaction, plants serve as food for herbivores on the food chain. Then the livelihood of herbivores highly depends on the availability of food, in this case the availability of plants. Moreover, the abundance of the plant density alone does not guarantee the non-extinction of the herbivore population as they are assumed to reproduce sexually. With this motivation, in this paper a predator–prey mathematical model is reformulated such that the death rate of the herbivore population is dependent on the plant density and their emergence is also governed by the Allee effect. Using the mathematical theory of dynamical system, threshold conditions are obtained for the non-extinction of the herbivore population and a trapping region is obtained to ensure co-existence of the population. Moreover, it has been shown that the dynamics of the population is significantly sensitive to the feeding rate and the harvest rate of the herbivore population.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Massimo Stella ◽  
Sanja Selakovic ◽  
Alberto Antonioni ◽  
Cecilia S Andreazzi

Despite their potential interplay, multiple routes of many disease transmissions are often investigated separately. As a unifying framework for understanding parasite spread through interdependent transmission paths, we present the ‘ecomultiplex’ model, where the multiple transmission paths among a diverse community of interacting hosts are represented as a spatially explicit multiplex network. We adopt this framework for designing and testing potential control strategies for Trypanosoma cruzi spread in two empirical host communities. We show that the ecomultiplex model is an efficient and low data-demanding method to identify which species enhances parasite spread and should thus be a target for control strategies. We also find that the interplay between predator-prey and host-parasite interactions leads to a phenomenon of parasite amplification, in which top predators facilitate T. cruzi spread, offering a mechanistic interpretation of previous empirical findings. Our approach can provide novel insights in understanding and controlling parasite spreading in real-world complex systems.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yun Wu ◽  
Spencer C. H. Barrett ◽  
Xuyu Duan ◽  
Jie Zhang ◽  
Yongpeng Cha ◽  
...  

Quantifying the relations between plant-antagonistic interactions and natural selection among populations is important for predicting how spatial variation in ecological interactions drive adaptive differentiation. Here, we investigate the relations between the opportunity for selection, herbivore-mediated selection, and the intensity of plant-herbivore interaction among 11 populations of the insect-pollinated plant Primula florindae over 2 years. We experimentally quantified herbivore-mediated directional selection on three floral traits (two display and one phenological) within populations and found evidence for herbivore-mediated selection for a later flowering start date and a greater number of flowers per plant. The opportunity for selection and strength of herbivore-mediated selection on number of flowers varied nonlinearly with the intensity of herbivory among populations. These parameters increased and then decreased with increasing intensity of plant-herbivore interactions, defined as an increase in the ratio of herbivore-damaged flowers per individual. Our results provide novel insights into how plant-antagonistic interactions can shape spatial variation in selection on floral traits and contribute toward understanding the mechanistic basis of geographic variation in angiosperm flowers.


2020 ◽  
Author(s):  
Rocío Escobar-Bravo ◽  
Bernardus CJ Schimmel ◽  
Peter GL Klinkhamer ◽  
Matthias Erb

AbstractPlants and herbivores are engaged in intimate antagonistic interactions, with plants trying to mount effective defense responses and herbivores attempting to manipulate plants for their own benefit. Here we report on a new mechanism by which herbivores can facilitate their own development. We show that tomato (Solanum lycopersicum) leaf attack by the American serpentine leafminer Lyriomiza trifolii accelerates the development of conspecific pupae in the soil adjacent to the plant. This pattern was reversed in the jasmonate-signaling deficient tomato mutant def-1. Chemical analyses revealed that L. trifolii leaf attack changes the production of root volatiles in a def-1 dependent manner. Thus, leaf-feeding herbivores can interact with their soil-dwelling pupae, and jasmonates and root volatiles likely play relevant roles in this phenomenon. This study expands the repertoire of plant-herbivore interactions to herbivory-induced modulation of metamorphosis.


2002 ◽  
Vol 8 ◽  
pp. 353-374 ◽  
Author(s):  
Gregory P. Dietl ◽  
Patricia H. Kelley

Arms races between predators and prey may be driven by two related processes—escalation and coevolution. Escalation is enemy-driven evolution. In this top-down view of an arms race, the role of prey (with the exception of dangerous prey) is downplayed. In coevolution, two or more species change reciprocally in response to one another; prey are thought to drive the evolution of their predator, and vice versa. In the fossil record, the two processes are most reliably distinguished when the predator-prey system is viewed within the context of the other species that may influence the interaction, thus allowing for a relative ranking of the importance of selective agents. Detailed documentation of the natural history of living predator-prey systems is recommended in order to distinguish the processes in some fossil systems. A geographic view of species interactions and the processes driving their evolution may lead to a more diverse array of testable hypotheses on how predator-prey systems evolve and what constraints interactions impose on the evolution of organisms. Scale is important in evaluating the role of escalation and coevolution in the evolution of species interactions. If short-term reciprocal adaptation (via phenotypic plasticity or selection mosaics among populations) between predator and prey is a common process, then prey are likely to exert some selective pressure over their predators over the short term (on ecological time scales), but in the long run predators may still exert primary “top-down” control in directing evolution. On the scale of evolutionary time, predators of large effect likely control the overall directionality of evolution due to the inequalities of predator and prey in control of resources.


2021 ◽  
Vol 22 (3) ◽  
pp. 1442
Author(s):  
Sukhman Singh ◽  
Ishveen Kaur ◽  
Rupesh Kariyat

There is no argument to the fact that insect herbivores cause significant losses to plant productivity in both natural and agricultural ecosystems. To counter this continuous onslaught, plants have evolved a suite of direct and indirect, constitutive and induced, chemical and physical defenses, and secondary metabolites are a key group that facilitates these defenses. Polyphenols—widely distributed in flowering plants—are the major group of such biologically active secondary metabolites. Recent advances in analytical chemistry and metabolomics have provided an opportunity to dig deep into extraction and quantification of plant-based natural products with insecticidal/insect deterrent activity, a potential sustainable pest management strategy. However, we currently lack an updated review of their multifunctional roles in insect-plant interactions, especially focusing on their insect deterrent or antifeedant properties. This review focuses on the role of polyphenols in plant-insect interactions and plant defenses including their structure, induction, regulation, and their anti-feeding and toxicity effects. Details on mechanisms underlying these interactions and localization of these compounds are discussed in the context of insect-plant interactions, current findings, and potential avenues for future research in this area.


Sign in / Sign up

Export Citation Format

Share Document