scholarly journals The R2R3 Transcription Factor CsMYB59 Regulates Polyphenol Oxidase Gene CsPPO1 in Tea Plants (Camellia sinensis)

2021 ◽  
Vol 12 ◽  
Author(s):  
Xiangxiang Huang ◽  
Shuqiong Ou ◽  
Qin Li ◽  
Yong Luo ◽  
Haiyan Lin ◽  
...  

Polyphenol oxidase (PPO) plays a role in stress response, secondary metabolism, and other physiological processes during plant growth and development, and is also a critical enzyme in black tea production. However, the regulatory mechanisms of PPO genes and their activity in tea plants are still unclear. In this study, we measured PPO activity in two different tea cultivars, Taoyuandaye (TYDY) and Bixiangzao (BXZ), which are commonly used to produce black tea and green tea, respectively. The expression pattern of CsPPO1 was assessed and validated via transcriptomics and quantitative polymerase chain reaction in both tea varieties. In addition, we isolated and identified an R2R3-MYB transcription factor CsMYB59 that may regulate CsPPO1 expression. CsMYB59 was found to be a nuclear protein, and its expression in tea leaves was positively correlated with CsPPO1 expression and PPO activity. Transcriptional activity analysis showed that CsMYB59 was a transcriptional activator, and the dual-luciferase assay indicated that CsMYB59 could activate the expression of CsPPO1 in tobacco leaves. In summary, our study demonstrates that CsMYB59 represents a transcriptional activator in tea plants and may mediate the regulation of PPO activity by activating CsPPO1 expression. These findings provide novel insights into the regulatory mechanism of PPO gene in Camellia sinensis, which might help to breed tea cultivars with high PPO activity.

2019 ◽  
Vol 20 (10) ◽  
pp. 2602 ◽  
Author(s):  
Dan Liu ◽  
Shuai Meng ◽  
Zhonghuai Xiang ◽  
Guangwei Yang ◽  
Ningjia He

The aim of this study was to determine how the mulberry (Morus notabilis) polyphenol oxidase 1 gene (MnPPO1) is regulated during plant stress responses by exploring the interaction between its promoter region and regulatory transcription factors. First, we analyzed the cis-acting elements in the MnPPO1 promoter. Then, we used the MnPPO1 promoter region [(1268 bp, including an MYB3R-binding cis-element (MSA)] as a probe to capture proteins in DNA pull-down assays. These analyses revealed that the MYB3R1 transcription factor in M. notabilis (encoded by MnMYB3R1) binds to the MnPPO1 promoter region. We further explored the interaction between the MnPPO1 promoter and MYB3R1 with the dual luciferase reporter, yeast one-hybrid, and chromatin immunoprecipitation assays. These analyses verified that MnMYB3R1 binds to the MSA in the MnPPO1 promoter region. The overexpression of MnMYB3R1 in tobacco upregulated the expression of the tobacco PPO gene. This observation as well as the quantitative real-time PCR results implied that MnMYB3R1 and PPO are involved in the abscisic acid-responsive stress response pathway.


Plant Science ◽  
2020 ◽  
Vol 298 ◽  
pp. 110546 ◽  
Author(s):  
Beibei Wen ◽  
Yong Luo ◽  
Dongmin Liu ◽  
Xiangna Zhang ◽  
Zhong Peng ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Kaijie Zheng ◽  
Xutong Wang ◽  
Yating Wang ◽  
Shucai Wang

Abstract Background Trichome initiation in Arabidopsis is regulated by a MYB-bHLH-WD40 (MBW) transcriptional activator complex formed by the R2R3 MYB transcription factor GLABRA1 (GL1), MYB23 or MYB82, the bHLH transcription factor GLABRA3 (GL3), ENHANCER OF GLABRA3 (EGL3) or TRANSPARENT TESTA8 (TT8), and the WD40-repeat protein TRANSPARENT TESTA GLABRA1 (TTG1). However, the functions of the rice homologs of the MBW complex proteins remained uncharacterized. Results Based on amino acid sequence identity and similarity, and protein interaction prediction, we identified OsGL1s, OsGL3s and OsTTG1s as rice homologs of the MBW complex proteins. By using protoplast transfection, we show that OsGL1D, OsGL1E, OsGL3B and OsTTG1A were predominantly localized in the nucleus, OsGL3B functions as a transcriptional activator and is able to interact with GL1 and TTG1. By using yeast two-hybrid and protoplast transfection assays, we show that OsGL3B is able to interact with OsGL1E and OsTTG1A, and OsGL1E and OsTTG1A are also able to interact with GL3. On the other hand, we found that OsGL1D functions as a transcription activator, and it can interact with GL3 but not OsGL3B. Furthermore, our results show that expression of OsTTG1A in the ttg1 mutant restored the phenotypes including alternations in trichome and root hair formation, seed color, mucilage production and anthocyanin biosynthesis, indicating that OsTTG1A and TTG1 may have similar functions. Conclusion These results suggest that the rice homologs of the Arabidopsis MBW complex proteins are able to form MBW complexes, but may have conserved and non-conserved functions.


2018 ◽  
Vol 14 (1) ◽  
Author(s):  
Robert K. Koech ◽  
Pelly M. Malebe ◽  
Christopher Nyarukowa ◽  
Richard Mose ◽  
Samson M. Kamunya ◽  
...  

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Binmei Sun ◽  
Zhangsheng Zhu ◽  
Panrong Cao ◽  
Hao Chen ◽  
Changming Chen ◽  
...  

Plant Science ◽  
2021 ◽  
Vol 302 ◽  
pp. 110720
Author(s):  
Jinhe Wang ◽  
Wenzhen Chen ◽  
Hanyue Wang ◽  
Yuanda Li ◽  
Biao Wang ◽  
...  

Author(s):  
Shuyuan Liu ◽  
Qiqi Zhang ◽  
Changfei Guan ◽  
Daying Wu ◽  
Tianshan Zhou ◽  
...  

2021 ◽  
Author(s):  
Liuyuan Shui ◽  
Meilin Yan ◽  
Hui Li ◽  
Pu Wang ◽  
Hua Zhao ◽  
...  

Abstract Tea plant(Camellia sinensis) has very long history of cultivation and abundant germplasm resources in China. Purple bud is a characteristic variety, which has attracted the attention of breeding researchers because it accumulated a large number of anthocyanins naturally. In many species, R2R3-MYBtranscription factors (TFs)wereprovedto be involved in the regulation of anthocyanin biosynthesis.Research on anthocyanin metabolism has been relatively clear in some species, but that needs to be further elucidated in tea plants. In this research, anR2R3-MYB transcriptionfactor CsMYB113 relate to the anthocyanin accumulation regulation was identified from tea plants. Spatial and temporal expressionanalysis revealed differential expression of CsMYB113among different tissues and organs, with highest expression occurringin the roots.Subcellular localization assays showed that CsMYB113 localizedin the nucleus.Ectopic expression of CsMYB113increased pigmentation and anthocyanin contentsby the up-regulationof theexpression levelsof genes in anthocyanin biosynthesis pathwayamongdifferent tissues of Arabidopsis.Moreover, transient overexpressionof 35S::CsMYB113in tea plant increased the anthocyanin contents in the leaves.Our results indicated that CsMYB113 play important role in the anthocyaninbiosynthesis regulation in tea plants. It will also provide useful candidate gene for the modification of anthocyanin metabolism by genetic engineeringin plants.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Chao Sun ◽  
Chunming Wang ◽  
Wang Zhang ◽  
Shuai Liu ◽  
Weiyao Wang ◽  
...  

AbstractThe anthocyanin content in apple skin determines its red coloration, as seen in a Fuji apple mutant. Comparative RNA-seq analysis was performed to determine differentially expressed genes at different fruit development stages between the wild-type and the skin color mutant. A novel R2R3-MYB transcription factor, MdMYB90-like, was uncovered as the key regulatory gene for enhanced coloration in the mutant. The expression of MdMYB90-like was 21.3 times higher in the mutant. MdMYB90-like regulates anthocyanin biosynthesis directly through the activation of anthocyanin biosynthesis genes and indirectly through the activation of other transcription factors that activate anthocyanin biosynthesis. MdMYB90-like bound to the promoters of both structural genes (MdCHS and MdUFGT) and other transcription factor genes (MdMYB1 and MdbHLH3) in the yeast one-hybrid system, electrophoretic mobility shift assay, and dual-luciferase assay. Transgenic analysis showed that MdMYB90-like was localized in the nucleus, and its overexpression induced the expression of other anthocyanin-related genes, including MdCHS, MdCHI, MdANS, MdUFGT, MdbHLH3, and MdMYB1. The mutant had reduced levels of DNA methylation in two regions (−1183 to −988 and −2018 to −1778) of the MdMYB90-like gene promoter, which might explain the enhanced expression of the gene and the increased anthocyanin content in the mutant apple skin.


Sign in / Sign up

Export Citation Format

Share Document