scholarly journals Characterization of the R2R3-MYB Transcription Factor CsMYB113 Regulates Anthocyanin Biosynthesis in Tea Plants (Camellia Sinensis)

Author(s):  
Liuyuan Shui ◽  
Meilin Yan ◽  
Hui Li ◽  
Pu Wang ◽  
Hua Zhao ◽  
...  

Abstract Tea plant(Camellia sinensis) has very long history of cultivation and abundant germplasm resources in China. Purple bud is a characteristic variety, which has attracted the attention of breeding researchers because it accumulated a large number of anthocyanins naturally. In many species, R2R3-MYBtranscription factors (TFs)wereprovedto be involved in the regulation of anthocyanin biosynthesis.Research on anthocyanin metabolism has been relatively clear in some species, but that needs to be further elucidated in tea plants. In this research, anR2R3-MYB transcriptionfactor CsMYB113 relate to the anthocyanin accumulation regulation was identified from tea plants. Spatial and temporal expressionanalysis revealed differential expression of CsMYB113among different tissues and organs, with highest expression occurringin the roots.Subcellular localization assays showed that CsMYB113 localizedin the nucleus.Ectopic expression of CsMYB113increased pigmentation and anthocyanin contentsby the up-regulationof theexpression levelsof genes in anthocyanin biosynthesis pathwayamongdifferent tissues of Arabidopsis.Moreover, transient overexpressionof 35S::CsMYB113in tea plant increased the anthocyanin contents in the leaves.Our results indicated that CsMYB113 play important role in the anthocyaninbiosynthesis regulation in tea plants. It will also provide useful candidate gene for the modification of anthocyanin metabolism by genetic engineeringin plants.

Plant Science ◽  
2020 ◽  
Vol 298 ◽  
pp. 110546 ◽  
Author(s):  
Beibei Wen ◽  
Yong Luo ◽  
Dongmin Liu ◽  
Xiangna Zhang ◽  
Zhong Peng ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Peixian Bai ◽  
Liyuan Wang ◽  
Kang Wei ◽  
Li Ruan ◽  
Liyun Wu ◽  
...  

Abstract Background Alanine decarboxylase (AlaDC), specifically present in tea plants, is crucial for theanine biosynthesis. Serine decarboxylase (SDC), found in many plants, is a protein most closely related to AlaDC. To investigate whether the new gene AlaDC originate from gene SDC and to determine the biochemical properties of the two proteins from Camellia sinensis, the sequences of CsAlaDC and CsSDC were analyzed and the two proteins were over-expressed, purified, and characterized. Results The results showed that exon-intron structures of AlaDC and SDC were quite similar and the protein sequences, encoded by the two genes, shared a high similarity of 85.1%, revealing that new gene AlaDC originated from SDC by gene duplication. CsAlaDC and CsSDC catalyzed the decarboxylation of alanine and serine, respectively. CsAlaDC and CsSDC exhibited the optimal activities at 45 °C (pH 8.0) and 40 °C (pH 7.0), respectively. CsAlaDC was stable under 30 °C (pH 7.0) and CsSDC was stable under 40 °C (pH 6.0–8.0). The activities of the two enzymes were greatly enhanced by the presence of pyridoxal-5′-phosphate. The specific activity of CsSDC (30,488 IU/mg) was 8.8-fold higher than that of CsAlaDC (3467 IU/mg). Conclusions Comparing to CsAlaDC, its ancestral enzyme CsSDC exhibited a higher specific activity and a better thermal and pH stability, indicating that CsSDC acquired the optimized function after a longer evolutionary period. The biochemical properties of CsAlaDC might offer reference for theanine industrial production.


2022 ◽  
Vol 293 ◽  
pp. 110674
Author(s):  
Yiguang Wang ◽  
Li-Jie Zhou ◽  
Yuxi Wang ◽  
Zhiqiang Geng ◽  
Baoqing Ding ◽  
...  

2018 ◽  
Vol 19 (12) ◽  
pp. 3938 ◽  
Author(s):  
Chi-Hui Sun ◽  
Chin-Ying Yang ◽  
Jason Tzen

Tea (Camellia sinensis L.) contains abundant secondary metabolites, which are regulated by numerous enzymes. Hydroxycinnamoyl transferase (HCT) is involved in the biosynthesis pathways of polyphenols and flavonoids, and it can catalyze the transfer of hydroxyconnamoyl coenzyme A to substrates such as quinate, flavanol glycoside, or anthocyanins, thus resulting in the production of chlorogenic acid or acylated flavonol glycoside. In this study, the CsHCT gene was cloned from the Chin-Shin Oolong tea plant, and its protein functions and characteristics were analyzed. The full-length cDNA of CsHCT contains 1311 base pairs and encodes 436 amino acid sequences. Amino acid sequence was highly conserved with other HCTs from Arabidopsis thaliana, Populus trichocarpa, Hibiscus cannabinus, and Coffea canephora. Quantitative real-time polymerase chain reaction analysis showed that CsHCT is highly expressed in the stem tissues of both tea plants and seedlings. The CsHCT expression level was relatively high at high altitudes. The abiotic stress experiment suggested that low temperature, drought, and high salinity induced CsHCT transcription. Furthermore, the results of hormone treatments indicated that abscisic acid (ABA) induced a considerable increase in the CsHCT expression level. This may be attributed to CsHCT involvement in abiotic stress and ABA signaling pathways.


HortScience ◽  
2018 ◽  
Vol 53 (5) ◽  
pp. 651-655 ◽  
Author(s):  
Liping Zhang ◽  
Chen Shen ◽  
Jipeng Wei ◽  
Wenyan Han

6-Benzyladenine (6-BA) is a safe and efficient cytokinin. The adult tea plants of the cv. Longjing 43 were used in this study. The foliar portion of tea bushes were sprayed with different concentrations (50, 100, 200, or 400 mg·L−1) of 6-BA after heavy pruning, when three to four leaves grew out in late May. The effects of 6-BA application on the growth of the new shoots and lateral branches were quantified. After 5 months, treatments with 50, 100, 200, or 400 mg·L−1 6-BA suppressed plant height by 11.0%, 18.0%, 21.0%, or 22.0%, respectively; 6-BA at 100, 200, or 400 mg·L−1 decreased the number of lateral branches by 20.0%, 23.0%, or 18.0%, respectively. Meanwhile, treatments with 50, 200, or 400 mg·L−1 6-BA increased the length of lateral branches by 38.0%, 79.0%, or 81.0% respectively; 200 mg·L−1 6-BA increased the diameter of lateral branches by 8.0%. In addition, after 2 months, 50 or 200 mg·L−1 6-BA did not significantly affect the growth of functional leaves, 50, 100, or 200 mg·L−1 6-BA did not significantly affect photosynthetic rate (Pn) as compared with the control. Furthermore, 200 or 400 mg·L−1 6-BA significantly increased spring tea yield by 28.9% or 13.3%, respectively as compared with the control. In conclusion, 6-BA at the four concentrations promoted dwarfing and the formation of productive lateral branches and increased the spring yield, and 200 mg·L−1 6-BA exerted the best comprehensive effect.


Sign in / Sign up

Export Citation Format

Share Document