scholarly journals Motor Preparation for Action Inhibition: A Review of Single Pulse TMS Studies Using the Go/NoGo Paradigm

2019 ◽  
Vol 10 ◽  
Author(s):  
Stefania C. Ficarella ◽  
Lorella Battelli
2021 ◽  
Vol 11 (6) ◽  
pp. 680
Author(s):  
Stefania C. Ficarella ◽  
Andrea Desantis ◽  
Alexandre Zénon ◽  
Boris Burle

Motor preparation, based on one’s goals and expectations, allows for prompt reactions to stimulations from the environment. Proactive and reactive inhibitory mechanisms modulate this preparation and interact to allow a flexible control of responses. In this study, we investigate these two control mechanisms with an ad hoc cued Go/NoGo Simon paradigm in a within-subjects design, and by measuring subliminal motor activities through electromyographic recordings. Go cues instructed participants to prepare a response and wait for target onset to execute it (Go target) or inhibit it (NoGo target). Proactive inhibition keeps the prepared response in check, hence preventing false alarms. Preparing the cue-coherent effector in advance speeded up responses, even when it turned out to be the incorrect effector and reactive inhibition was needed to perform the action with the contralateral one. These results suggest that informative cues allow for the investigation of the interaction between proactive and reactive action inhibition. Partial errors’ analysis suggests that their appearance in compatible conflict-free trials depends on cue type and prior preparatory motor activity. Motor preparation plays a key role in determining whether proactive inhibition is needed to flexibly control behavior, and it should be considered when investigating proactive/reactive inhibition.


2010 ◽  
Vol 104 (3) ◽  
pp. 1392-1400 ◽  
Author(s):  
Oscar Soto ◽  
Josep Valls-Solé ◽  
Hatice Kumru

Motor preparation for execution of both simple and choice reaction time tasks (SRT and CRT) involves enhancement of corticospinal excitability (CE). However, motor preparation also implies changes in inhibitory control that have thus far been much less studied. Short-interval intracortical inhibition (SICI) has been shown to decrease before CE increases. Therefore we reasoned that, if SICI contributes to inhibitory control of voluntary movement during the preparatory phase, it would be larger in CRT than in SRT because of the need to keep the movement unreleased until the uncertainty resolves on which task is required. We measured changes in SICI and in CE at different time points preceding motor reaction in normal subjects. Single-pulse transcranial magnetic stimulation (spTMS) and paired-pulse transcranial magnetic stimulation (ppTMS) produced time-dependent changes in both SRT and CRT, with shortening when applied close to the presentation of the imperative signal (“early”) and lengthening when applied near the expected reaction (“late”). In addition, at all stimulation time points, reaction time was shorter with ppTMS than that with spTMS, but there was no consistent association between the amount of SICI and reaction time changes. At early stimulation time points, CE was reduced in CRT but not in SRT. However, SICI in CRT was not different from SICI in SRT. At late stimulation time points, SICI decreased just before enhancement of CE. Our findings indicate that inhibitory circuits other than SICI are responsible for setting the level of CE at earlier parts of the reaction time period. Although the decrease in SICI may contribute to the increase in CE at the last part of the premotor period, the two phenomena are not dependent on each other.


2007 ◽  
Author(s):  
Donatella Spinelli ◽  
Teresa Aprile Francesco Di Russo ◽  
Sabrina Pitzalis

1972 ◽  
Vol 22 (3) ◽  
pp. 303-317 ◽  
Author(s):  
D. H. Napier ◽  
N. Subrahmanyam
Keyword(s):  

2015 ◽  
Vol 135 (3) ◽  
pp. 284-290 ◽  
Author(s):  
Yoshihiro Nakazawa ◽  
Kazuhiro Ohyama ◽  
Hiroaki Fujii ◽  
Hitoshi Uehara ◽  
Yasushi Hyakutake

2018 ◽  
Author(s):  
Claudia Gianelli ◽  
Katharina Kühne ◽  
Silvia Mencaraglia ◽  
Riccardo Dalla Volta

In two experiments, we compared the dynamics of corticospinal excitability when processing visually or linguistically presented tool-oriented hand actions in native speakers and sequential bilinguals. In a third experiment we used the same procedure to test non-motor, low-level stimuli, i.e. scrambled images and pseudo-words. Stimuli were presented in sequence: pictures (tool + tool-oriented hand action or their scrambled counterpart) and words (tool noun + tool-action verb or pseudo-words). Experiment 1 presented German linguistic stimuli to native speakers, while Experiment 2 presented English stimuli to non-natives. Experiment 3 tested Italian native speakers. Single-pulse trascranial brain stimulation (spTMS) was applied to the left motor cortex at five different timings: baseline, 200ms after tool/noun onset, 150, 350 and 500ms after hand/verb onset with motor-evoked potentials (MEPs) recorded from the first dorsal interosseous (FDI) and abductor digiti minimi (ADM) muscles.We report strong similarities in the dynamics of corticospinal excitability across the visual and linguistic modalities. MEPs’ suppression started as early as 150ms and lasted for the duration of stimulus presentation (500ms). Moreover, we show that this modulation is absent for stimuli with no motor content. Overall, our study supports the notion of a core, overarching system of action semantics shared by different modalities.


Sign in / Sign up

Export Citation Format

Share Document