Paired-Pulse Transcranial Magnetic Stimulation During Preparation for Simple and Choice Reaction Time Tasks

2010 ◽  
Vol 104 (3) ◽  
pp. 1392-1400 ◽  
Author(s):  
Oscar Soto ◽  
Josep Valls-Solé ◽  
Hatice Kumru

Motor preparation for execution of both simple and choice reaction time tasks (SRT and CRT) involves enhancement of corticospinal excitability (CE). However, motor preparation also implies changes in inhibitory control that have thus far been much less studied. Short-interval intracortical inhibition (SICI) has been shown to decrease before CE increases. Therefore we reasoned that, if SICI contributes to inhibitory control of voluntary movement during the preparatory phase, it would be larger in CRT than in SRT because of the need to keep the movement unreleased until the uncertainty resolves on which task is required. We measured changes in SICI and in CE at different time points preceding motor reaction in normal subjects. Single-pulse transcranial magnetic stimulation (spTMS) and paired-pulse transcranial magnetic stimulation (ppTMS) produced time-dependent changes in both SRT and CRT, with shortening when applied close to the presentation of the imperative signal (“early”) and lengthening when applied near the expected reaction (“late”). In addition, at all stimulation time points, reaction time was shorter with ppTMS than that with spTMS, but there was no consistent association between the amount of SICI and reaction time changes. At early stimulation time points, CE was reduced in CRT but not in SRT. However, SICI in CRT was not different from SICI in SRT. At late stimulation time points, SICI decreased just before enhancement of CE. Our findings indicate that inhibitory circuits other than SICI are responsible for setting the level of CE at earlier parts of the reaction time period. Although the decrease in SICI may contribute to the increase in CE at the last part of the premotor period, the two phenomena are not dependent on each other.

2001 ◽  
Vol 85 (6) ◽  
pp. 2624-2629 ◽  
Author(s):  
A. P. Strafella ◽  
T. Paus

Positron emission tomography (PET) was used to assess changes in regional cerebral blood flow (CBF) induced by paired-pulse transcranial magnetic stimulation (TMS) of primary motor cortex (M1). The study was performed in eight normal volunteers using two Magstim-200 stimulators linked with a Bistim module. A circular TMS coil was held in the scanner by a mechanical arm and located over the left M1. Surface electrodes were used to record motor evoked potentials (MEPs) from the contralateral first dorsal interosseous muscle (FDI). Cortical excitability was evaluated in the relaxed FDI using a paired conditioning-test stimulus paradigm with two interstimulus intervals (ISIs): 3 and 12 ms. The subjects were scanned three times during each of the following four conditions: 1) baseline with no TMS (BASE); 2) single-pulse TMS (TMSsing); 3) 3-ms paired-pulse TMS (TMS3); and 4) 12-ms paired-pulse TMS (TMS12). CBF and peak-to-peak MEP amplitudes were measured over each 60-s scanning period. To assess TMS-induced changes in CBF, a t-statistic map was generated by first subtracting the single-pulse TMS condition from the 3- and 12-ms paired-pulse TMS conditions and then correlating the CBF differences, respectively, with the amount of suppression and facilitation of the EMG responses. A significant positive correlation was observed between the CBF difference (TMS3-TMSsing) and the amount of suppression of EMG response, as well as between the CBF difference (TMS12-TMSsing) and the amount of facilitation of EMG response. This positive correlation was observed in the left M1, left lateral premotor cortex, and right M1 in the case of 3-ms paired-pulse TMS, but only in the left M1 in the case of 12-ms paired-pulse TMS. The above pattern of CBF response to paired-pulse TMS supports the possibility that suppression and facilitation of the EMG response are mediated by different populations of cortical interneurons.


2020 ◽  
Vol 129 (2) ◽  
pp. 205-217
Author(s):  
Callum G. Brownstein ◽  
Loïc Espeit ◽  
Nicolas Royer ◽  
Thomas Lapole ◽  
Guillaume Y. Millet

This study compared the change in silent period (SP) and short-interval intracortical inhibition (SICI) with conditioning stimulus and single-pulse transcranial magnetic stimulation (TMS) intensities (for SICI and SP, respectively) eliciting maximal and submaximal SICI and SP during fatiguing exercise. The results showed that changes in SICI were only detectable with intensities evoking maximal responses, with no difference between intensities for SP. These findings highlight the importance of maximizing SICI with appropriate intensities before measuring SICI during fatiguing exercise.


1997 ◽  
Vol 755 (2) ◽  
pp. 181-192 ◽  
Author(s):  
Patricia Romaiguère ◽  
Camille-Aimé Possamaı̈ ◽  
Thierry Hasbroucq

2005 ◽  
Vol 382 (3) ◽  
pp. 312-316 ◽  
Author(s):  
Roland Sparing ◽  
Nina Dambeck ◽  
Kathrin Stock ◽  
Ingo G. Meister ◽  
Dorothee Huetter ◽  
...  

2019 ◽  
Author(s):  
Mana Biabani ◽  
Alex Fornito ◽  
James P. Coxon ◽  
Ben D. Fulcher ◽  
Nigel C. Rogasch

AbstractTranscranial magnetic stimulation (TMS) is a powerful tool to investigate cortical circuits. Changes in cortical excitability following TMS are typically assessed by measuring changes in either conditioned motor-evoked potentials (MEPs) following paired-pulse TMS over motor cortex or evoked potentials measured with electroencephalography following single-pulse TMS (TEPs). However, it is unclear whether these two measures of cortical excitability index the same cortical response. Twenty-four healthy participants received local and interhemispheric paired-pulse TMS over motor cortex with eight inter-pulse intervals, suband suprathreshold conditioning intensities, and two different pulse waveforms, while MEPs were recorded from a hand muscle. TEPs were also recorded in response to single-pulse TMS using the conditioning pulse alone. The relationships between TEPs and conditioned-MEPs were evaluated using metrics sensitive to both their magnitude at each timepoint and their overall shape across time. The impacts of undesired sensory potentials resulting from TMS pulse and muscle contractions were also assessed on both measures. Both conditioned-MEPs and TEPs were sensitive to re-afferent somatosensory activity following motor-evoked responses, but over different post-stimulus timepoints. Moreover, the amplitude of low-frequency oscillations in TEPs was strongly correlated with the sensory potentials, whereas early and local high-frequency responses showed minimal relationships. Accordingly, conditioned-MEPs did not correlate with TEPs in the time domain but showed high shape similarity with the amplitude of high-frequency oscillations in TEPs. Therefore, despite the effects of sensory confounds, the TEP and MEP measures share a response component, suggesting that they index a similar cortical response and perhaps the same neuronal populations.


Sign in / Sign up

Export Citation Format

Share Document