scholarly journals Brief and Indirect Exposure to Natural Environment Restores the Directed Attention for the Task

2021 ◽  
Vol 12 ◽  
Author(s):  
Tsukasa Kimura ◽  
Tatsuya Yamada ◽  
Yohko Hirokawa ◽  
Kazumitsu Shinohara

The mental fatigue elicited by working and studying consumed mental resources, thereby eliciting a declined performance and an increased mental stress. The long-term continuous work and study, which is typical for modern workers and students, can increase mental fatigue and health risks. Previous studies reported that the natural environment (i.e., forest and waterside) has a restorative of mental resources (i.e., attention) and reducing stress. However, it is difficult for urban workers and students to take sufficient breaks in real natural environment. We conducted an experiment to examine whether brief and indirect exposure to the natural environment elicits a restorative of attention and reducing stress. Twenty-five undergraduate and graduate students from the university of modern city participated in the experiment. The experiment involved measuring the changes in the task performance of the participants (i.e., sustained attention to response task) and the subjective mental workload (i.e., arousal, valence, and NASA-TLX), while the attention restoration was indexed from physiological response (i.e., skin conductance level, SCL) over time. The participants had two types of resting periods in the middle of the task, i.e., by looking at a blank display (simple break) or by watching a nature video having scenes of, e.g., a forest, small waterfall, and rustling leaves (nature break). The results indicate that the natural environment indirectly depicted through the nature videos does not affect the task performance and the subjective mental workload but decreases the SCL. The results of the physiological response suggest that having rest periods depicting the natural environment, even if indirectly and briefly, can restore the directed attention (i.e., mental resources) for the task. This experiment revealed a useful method of resting for urban workers and students to restore their attention to a task.

Author(s):  
Holland M. Vasquez ◽  
Justin G. Hollands ◽  
Greg A. Jamieson

Some previous research using a new augmented reality map display called Mirror-in-the-Sky (MitS) showed that performance was worse and mental workload (MWL) greater with MitS relative to a track-up map for navigation and wayfinding tasks. The purpose of the current study was to determine—for both MitS and track-up map—how much performance improves and MWL decreases with practice in a simple navigation task. We conducted a three-session experiment in which twenty participants completed a route following task in a virtual environment. Task completion times and collisions decreased, subjective MWL decreased, and secondary task performance improved with practice. The NASA-TLX Global ratings and Detection Response Task Hit Rates showed a larger decrease in MWL with MitS than the track-up map. Additionally, means for performance and workload measures showed that differences between the MitS and track-up map decreased in the first session. In later sessions the differences between the MitS and track-up map were negligible. As such, with practice performance and MWL may be comparable to a traditional track-up map.


2020 ◽  
Vol 72 ◽  
pp. 213-223 ◽  
Author(s):  
Mojtaba Zokaei ◽  
Mohammad Javad Jafari ◽  
Reza Khosrowabadi ◽  
Ali Nahvi ◽  
Sohila Khodakarim ◽  
...  

Sex Roles ◽  
1978 ◽  
Vol 4 (3) ◽  
Author(s):  
ValerieA. Valle ◽  
DouglasE. DeGood ◽  
RonaldS. Valle

Author(s):  
Thomas G. Hicks ◽  
Walter W. Wierwille

Five methods of measuring mental workload (secondary task performance, visual occlusion, cardiac arrhythmia, subjective opinion rating scales, and primary task performance) were compared for sensitivity to changes in operator loading. Each was used to differentiate among low, medium, and high levels of workload defined in terms of the application point of crosswind gusts in a driving task. The driving task was produced using an automobile driving simulator with a six-degree of freedom computer generated display, a four-degree of freedom physical motion system, and a four-channel sound system. Techniques of mental workload measurement that have shown promise in previous studies were used as a between-subjects factor, and subjects were presented with a within-subject factor of wind gust placement. Gusts at the front of the vehicle represented high workload levels, and gusts toward the center of the vehicle represented progressively lower levels of workload. The results showed significant differences among workload levels for subjective opinion scales and primary performance measures of lateral deviation, yaw deviation, and steering reversals. A relative sensitivity estimate of these would be, from highest to lowest sensitivity, steering reversals and yaw deviation, rating scales, and lateral deviation. The techniques of occlusion, cardiac arrhythmia, and secondary task performance yielded no significant workload effect.


Author(s):  
Alwyn L. Furtado ◽  
Brian N. Craig ◽  
Joshua T. Chard ◽  
Victor A. Zaloom ◽  
Hsing-Wei Chu

2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Camilla Grane ◽  
Peter Bengtsson

Today, several vehicles are equipped with a visual display combined with a haptic rotary device for handling in-vehicle information system tasks while driving. This experimental study investigates whether a haptic addition to a visual interface interferes with or supports secondary task performance and whether haptic information could be used without taking eyes off road. Four interfaces were compared during simulated driving: visual only, partly corresponding visual-haptic, fully corresponding visual-haptic, and haptic only. Secondary task performance and subjective mental workload were measured. Additionally, the participants were interviewed. It was found that some haptic support improved performance. However, when more haptic information was used, the results diverged in terms of task completion time and interface comprehension. Some participants did not sense all haptics provided, some did not comprehend the correspondence between the haptic and visual interfaces, and some did. Interestingly, the participants managed to complete the tasks when using haptic-only information.


Sign in / Sign up

Export Citation Format

Share Document