scholarly journals Spatial-Temporal Patterns of Air Pollutant Emissions From Landing and Take-Off Cycles in the Yangtze River Delta of China During the COVID-19 Outbreak

2021 ◽  
Vol 9 ◽  
Author(s):  
Danwen Bao ◽  
Shijia Tian ◽  
Ziqian Zhang ◽  
Hao Cheng ◽  
Ting Zhu ◽  
...  

The global aviation industry has been experiencing catastrophic disruption since the beginning of 2020 due to the unprecedented impact of the COVID-19 pandemic on air traffic. Although the decline in regular commercial air travel has caused tremendous economic loss to aviation stakeholders, it has also led to the reduction in the amount of recorded air pollutants. Most of the aircraft emissions are released during the cruise phase of flight, however they have relatively small impact on humans due to the fact that those emissions are released directly into the upper troposphere and lower stratosphere. Therefore, the scope of this study is to investigate the ground-level aircraft emissions from landing and take-off (LTO) cycles, as they have a greater influence on the ambient environment of the airports in a specific region. In this paper, we study the variation of typical air pollutant concentrations (i.e., HC, CO, and NOx) from the LTO cycles during the outbreak of COVID-19 pandemic in both temporal and spatial scales. These ground-level emissions are estimated for the 22 airports in the Yangtze River Delta, China. The results indicate that the variation pattern of the three air pollutants were significantly influenced by the dramatic onset of the COVID-19 pandemic, as well as the pertinent policies to suppress the spread of the virus. The results also reveal non-uniform distribution of the emission quantified at different airports. It is noticeable that the emission quantity generally declined from the east coast to the central and western part of the research region. Furthermore, discrepancies in the target markets also create disparities in the variation pattern of the emissions at different airports under the context of COVID-19.

2019 ◽  
Vol 206 ◽  
pp. 170-182 ◽  
Author(s):  
Tong Sha ◽  
Xiaoyan Ma ◽  
Hailing Jia ◽  
Ronald J. van der A ◽  
Jieying Ding ◽  
...  

Author(s):  
Min Lv ◽  
Zhanqing Li ◽  
Qingfeng Jiang ◽  
Tianmeng Chen ◽  
Yuying Wang ◽  
...  

The contrasting trends of surface particulate matter (PM2.5), ozone (O3), and nitrogen dioxide (NO2) and their relationships with meteorological parameters from 2015 to 2019 were investigated in the coastal city of Shanghai (SH) and the inland city of Hefei (HF), located in the Yangtze River Delta (YRD). In both cities, PM2.5 declined substantially, while O3 and NO2 showed peak values during 2017 when the most frequent extreme high-temperature events occurred. Wind speed was correlated most negatively with PM2.5 and NO2 concentrations, while surface temperature and relative humidity were most closely related to O3. All of the studied pollutants were reduced by rainfall scavenging, with the greatest reduction seen in PM2.5, followed by NO2 and O3. By contrast, air pollutants in the two cities were moderately strongly correlated, although PM2.5 concentrations were much lower and Ox (O3 + NO2) concentrations were higher in SH. Additionally, complex air pollution hours occurred more frequently in SH. Air pollutant concentrations changed more with wind direction in SH. A more effective washout effect was observed in HF, likely due to the more frequent strong convection and thunderstorms in inland areas. This research suggests pertinent air quality control measures should be designed accordingly for specific geographical locations.


2016 ◽  
Vol 16 (9) ◽  
pp. 2159-2171 ◽  
Author(s):  
Honglei Wang ◽  
Bin Zhu ◽  
Lijuan Shen ◽  
Honghui Xu ◽  
Junlin An ◽  
...  

Atmosphere ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 345
Author(s):  
Lang Chen ◽  
Jingjing Li ◽  
Xiaobing Pang ◽  
Kangli Shi ◽  
Jianmeng Chen ◽  
...  

Ningbo is a major coastal city in the Yangtze River Delta region, China, with the largest cargo capacity in the world. We conducted a field campaign in Ningbo to measure the impact of the COVID-19 lockdown on air pollutants including NO2, O3 and CO from 21 January to 23 March 2020, using a home-made low-cost sensor package. The average concentrations of NO2, O3 and CO were observed to be 7.2, 37.5 and 648.5 ppb, respectively, during the lockdown. Compared with the previous year, the concentrations of NO2 and CO decreased by 63.1% and 6.9%, while the concentration of O3 increased by 37.9%. The significant reduction of NO2 concentration may be attributed to the reduced emissions of freighters and heavy trucks with lower port cargo throughput, which led to a decrease of NO concentration. The increase of O3 concentration was probably due to the lower titration of O3 by NO. After the lockdown, the concentrations of O3 and NO2 increased by 15.5% and 143.1%, respectively, compared with those during the lockdown. The temporal variations of the concentrations of NO2, O3 and CO measured by the sensor package were coincident with those obtained by the reference apparatus, which proves the sensor package to be suitable for air quality monitoring in field campaigns. This is the first time that a dramatic decrease in NO2 concentration in a coastal city due to a lockdown has been reported.


2011 ◽  
Vol 11 (1) ◽  
pp. 951-983 ◽  
Author(s):  
C. Huang ◽  
C. H. Chen ◽  
L. Li ◽  
Z. Cheng ◽  
H. L. Wang ◽  
...  

Abstract. The purpose of this study is to develop an emission inventory for major anthropogenic air pollutants and VOC species in the Yangtze River Delta (YRD) region for the year 2007. A "bottom-up" methodology was adopted to compile the inventory based on major emission sources in the sixteen cities of this region. Results show that the emissions of SO2, NOx, CO, PM10, PM2.5, VOCs, and NH3 in the YRD region for the year 2007 are 2391.8 kt, 2292.9 kt, 6697.1 kt, 3115.7 kt, 1510.8 kt, 2767.4 kt, and 458.9 kt, respectively. Ethylene, mp-xylene, o-xylene, toluene, and 1,2,4-trimethylbenzene, 2,4-dimethylpentane, ethyl benzene, propylene, 1-pentene, and isoprene are the key species contributing 77% to the total OFPs. The spatial distribution of the emissions shows the emissions and OFPs are mainly concentrated in the urban and industrial areas along the Yangtze River and around the Hangzhou Bay. The industrial sources including power plant, other fuel combustion facilities, and non-combustion processes contribute about 97%, 86%, 89%, 91%, and 69% of the total SO2, NOx, PM10, PM2.5, and VOC emissions. Vehicles take up 12.3% and 12.4% of the NOx and VOC emissions, respectively. Regarding OFPs, chemical industry, domestic use of paint and printing, and gasoline vehicle contribute 38.2%, 23.9%, and 11.6% to the ozone formation in the YRD region.


2013 ◽  
Vol 13 (11) ◽  
pp. 30687-30720 ◽  
Author(s):  
Z. Cheng ◽  
S. Wang ◽  
X. Fu ◽  
J. G. Watson ◽  
J. Jiang ◽  
...  

Abstract. Open biomass burning is an important source of air pollution in China and globally. Joint observations of air pollution were conducted in five cities (Shanghai, Hangzhou, Ningbo, Suzhou and Nanjing) of the Yangtze River Delta, and a heavy haze episode with visibility 2.9–9.8 km was observed from 28 May to 6 June 2011. The contribution of biomass burning was quantified using both ambient monitoring data and the WRF/CMAQ model simulation. It was found that the average and maximum daily PM2.5 concentrations during the episode were 82 μg m−3 and 144 μg m−3, respectively. Weather pattern analysis indicated that a stagnant process enhanced the accumulation of air pollutants, while the following precipitation process scavenged the pollution. Daily minimum mixing depth during the stagnant period was below 50 m. Both observation data and CMAQ model simulation indicated that biomass open burning contributed 37% of PM2.5, 70% of organic carbon and 61% of elemental carbon. Satellite-detected fire spots, back-trajectory analysis and air model simulation can be integrated to identify the locations where the biomasses are burned. The results also suggest that the impact of biomass open burning is regional, due to the substantial inter-province transport of air pollutants. These findings would improve the understanding of not only heavy haze and air pollution episodes, but also the emissions of such open fires.


2011 ◽  
Vol 11 (9) ◽  
pp. 4105-4120 ◽  
Author(s):  
C. Huang ◽  
C. H. Chen ◽  
L. Li ◽  
Z. Cheng ◽  
H. L. Wang ◽  
...  

Abstract. The purpose of this study is to develop an emission inventory for major anthropogenic air pollutants and VOC species in the Yangtze River Delta (YRD) region for the year 2007. A "bottom-up" methodology was adopted to compile the inventory based on major emission sources in the sixteen cities of this region. Results show that the emissions of SO2, NOx, CO, PM10, PM2.5, VOCs, and NH3 in the YRD region for the year 2007 are 2392 kt, 2293 kt, 6697 kt, 3116 kt, 1511 kt, 2767 kt, and 459 kt, respectively. Ethylene, mp-xylene, o-xylene, toluene, 1,2,4-trimethylbenzene, 2,4-dimethylpentane, ethyl benzene, propylene, 1-pentene, and isoprene are the key species contributing 77 % to the total ozone formation potential (OFP). The spatial distribution of the emissions shows the emissions and OFPs are mainly concentrated in the urban and industrial areas along the Yangtze River and around Hangzhou Bay. The industrial sources, including power plants other fuel combustion facilities, and non-combustion processes contribute about 97 %, 86 %, 89 %, 91 %, and 69 % of the total SO2, NOx, PM10, PM2.5, and VOC emissions. Vehicles take up 12.3 % and 12.4 % of the NOx and VOC emissions, respectively. Regarding OFPs, the chemical industry, domestic use of paint & printing, and gasoline vehicles contribute 38 %, 24 %, and 12 % to the ozone formation in the YRD region.


Sign in / Sign up

Export Citation Format

Share Document