scholarly journals Numerous Factors Affecting Performance of NOMA for Massive Machine Type Communications in B5G Systems

Author(s):  
Chunlin Yan ◽  
Wei Liu ◽  
Hongwei Yuan

Massive machine type communications (mMTC) are one of the critical requirements for beyond fifth generation (B5G) communication systems. Services for a huge number of user terminals should be provided simultaneously due to the explosive development of mMTC. It is proved that non-orthogonal multiple access (NOMA) is effective in satisfying such a requirement. In this paper we evaluate the impacts of numerous factors, such as channel encoding, channel decoding, repetition number, multi-user detector, and number of receiver antennas, on the performance of NOMA. It is surprised to find that some conclusions drawn from orthogonal multiple access system may do not hold anymore for NOMA systems. The factors which have significant impact on the performance of NOMA should be paid more attention to in the system design. The analysis and evaluation results shine more light on how to design an effect NOMA scheme by considering both transmitter and receiver to fulfill the requirements of mMTC for B5G systems.

Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 116
Author(s):  
Wissal Ben Ameur ◽  
Philippe Mary ◽  
Jean-François Hélard ◽  
Marion Dumay ◽  
Jean Schwoerer

Non-orthogonal multiple access schemes with grant free access have been recently highlighted as a prominent solution to meet the stringent requirements of massive machine-type communications (mMTCs). In particular, the multi-user shared access (MUSA) scheme has shown great potential to grant free access to the available resources. For the sake of simplicity, MUSA is generally conducted with the successive interference cancellation (SIC) receiver, which offers a low decoding complexity. However, this family of receivers requires sufficiently diversified received user powers in order to ensure the best performance and avoid the error propagation phenomenon. The power allocation has been considered as a complicated issue especially for a decentralized decision with a minimum signaling overhead. In this paper, we propose a novel algorithm for an autonomous power decision with a minimal overhead based on a tight approximation of the bit error probability (BEP) while considering the error propagation phenomenon. We investigate the efficiency of multi-armed bandit (MAB) approaches for this problem in two different reward scenarios: (i) in Scenario 1, each user reward only informs about whether its own packet was successfully transmitted or not; (ii) in Scenario 2, each user reward may carry information about the other interfering user packets. The performances of the proposed algorithm and the MAB techniques are compared in terms of the successful transmission rate. The simulation results prove that the MAB algorithms show a better performance in the second scenario compared to the first one. However, in both scenarios, the proposed algorithm outperforms the MAB techniques with a lower complexity at user equipment.


2018 ◽  
Vol 56 (1) ◽  
pp. 102 ◽  
Author(s):  
Nguyen Huu Trung ◽  
Doan Thanh Binh

This paper proposes a novel Large-scale (massive) Multi-input Multi-output Multi-carrier Code division multiple access (LS MIMO MC-CDMA) model and application to Fifth-Generation Mobile Communication Systems (5G). This system uses combined cylindrical array antenna multiple beamforming architecture with spatial multiplexing. The model is optimized by Min-Max criteria in order to minimize side lobes and maximize compression of propagation loss. The Monte Carlo simulation results unify with the analytical solution for system performance.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Tongyi Zheng ◽  
Lei Ning ◽  
Qingsong Ye ◽  
Fan Jin

Massive machine-type communications (mMTCs) for Internet of things are being developed thanks to the fifth-generation (5G) wireless systems. Narrowband Internet of things (NB-IoT) is an important communication technology for machine-type communications. It supports many different protocols for communication. The reliability and performance of application layer communication protocols are greatly affected by the retransmission time-out (RTO) algorithm. In order to improve the reliability and performance of machine-type communications, this study proposes a novel RTO algorithm UDP-XGB based on the user datagram protocol (UDP) and NB-IoT. It combines traditional algorithms with machine learning. The simulation results show that real round-trip time (RTT) is close to the RTO, which is obtained by this algorithm, and the reliability and performance of machine-type communications have improved.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Minjoong Rim ◽  
Seungyeob Chae

One of the main requirements for next generation mobile or wireless communication systems is to effectively support a large number of machine type communication devices for Internet of things applications. In order to improve the random access capability in frame-based slotted Aloha environments, coded random access techniques have been proposed, in which multiple copies of a packet are transmitted per frame and the copies are cancelled out from the received signal if any single copy is successfully received. They, however, may increase the transmission power by sending multiple copies per frame. Above all, for systems with a small number of slots per frame, they may not be able to improve the performance by readily reaching a congested state. This paper proposes a new frame-based random access scheme, which sends at most one copy of a packet per frame but uses interference cancellation to improve the performance. If a successfully received packet is a retransmitted one, the previously transmitted signals for the packet can be cancelled out from the received signals for trying to decode other received packets. The proposed scheme has different characteristics than coded random access schemes and can be also combined with them to further improve the performance.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4290
Author(s):  
Antonio Arcidiacono ◽  
Daniele Finocchiaro ◽  
Riccardo De Gaudenzi ◽  
Oscar del Rio-Herrero ◽  
Stefano Cioni ◽  
...  

Non-orthogonal multiple access (NOMA) technologies are considered key technologies for terrestrial 5G massive machine-type communications (mMTC) applications. It is less known that NOMA techniques were pioneered about ten years ago in the satellite domain to match the growing demand for mMTC services. This paper presents the key features of the first NOMA-based satellite network, presenting not only the underlying technical solutions and measured performance but also the related deployment over the Eutelsat satellite fleet. In particular, we describe the specific ground segment developments for the user terminals and the gateway station. It is shown that the developed solution, based on an Enhanced Spread ALOHA random access technique, achieves an unprecedented throughput, scalability and service cost and is well matched to several mMTC satellite use cases. The ongoing R&D lines covering both the ground segment capabilities enhancement and the extension to satellite on-board packet demodulation are also outlined. These pioneering NOMA satellite technology developments and in-the-field deployments open up the possibility of developing and exploiting 5G mMTC satellite- and terrestrial-based systems in a synergic and interoperable architecture.


Sign in / Sign up

Export Citation Format

Share Document