scholarly journals The Origin of Non-thermal Fluctuations in Multiphase Flow in Porous Media

2021 ◽  
Vol 3 ◽  
Author(s):  
Maja Rücker ◽  
Apostolos Georgiadis ◽  
Ryan T. Armstrong ◽  
Holger Ott ◽  
Niels Brussee ◽  
...  

Core flooding experiments to determine multiphase flow in properties of rock such as relative permeability can show significant fluctuations in terms of pressure, saturation, and electrical conductivity. That is typically not considered in the Darcy scale interpretation but treated as noise. However, in recent years, flow regimes that exhibit spatio-temporal variations in pore scale occupancy related to fluid phase pressure changes have been identified. They are associated with topological changes in the fluid configurations caused by pore-scale instabilities such as snap-off. The common understanding of Darcy-scale flow regimes is that pore-scale phenomena and their signature should have averaged out at the scale of representative elementary volumes (REV) and above. In this work, it is demonstrated that pressure fluctuations observed in centimeter-scale experiments commonly considered Darcy-scale at fractional flow conditions, where wetting and non-wetting phases are co-injected into porous rock at small (<10−6) capillary numbers are ultimately caused by pore-scale processes, but there is also a Darcy-scale fractional flow theory aspect. We compare fluctuations in fractional flow experiments conducted on samples of few centimeters size with respective experiments and in-situ micro-CT imaging at pore-scale resolution using synchrotron-based X-ray computed micro-tomography. On that basis we can establish a systematic causality from pore to Darcy scale. At the pore scale, dynamic imaging allows to directly observe the associated breakup and coalescence processes of non-wetting phase clusters, which follow “trajectories” in a “phase diagram” defined by fractional flow and capillary number and can be used to categorize flow regimes. Connected pathway flow would be represented by a fixed point, whereas processes such as ganglion dynamics follow trajectories but are still overall capillary-dominated. That suggests that the origin of the pressure fluctuations observed in centimeter-sized fractional flow experiments are capillary effects. The energy scale of the pressure fluctuations corresponds to 105-106 times the thermal energy scale. This means the fluctuations are non-thermal. At the centimeter scale, there are non-monotonic and even oscillatory solutions permissible by the fractional flow theory, which allow the fluctuations to be visible and—depending on exact conditions—significant at centimeter scale, within the viscous limit of classical (Darcy scale) fractional flow theory. That also means that the phenomenon involves both capillary aspects from the pore or cluster scale and viscous aspects of fractional flow and occurs right at the transition, where the physical description concept changes from pore to Darcy scale.

SPE Journal ◽  
2019 ◽  
Vol 24 (03) ◽  
pp. 1234-1247 ◽  
Author(s):  
Shuangmei Zou ◽  
Ryan T. Armstrong

Summary Wettability is a major factor that influences multiphase flow in porous media. Numerous experimental studies have reported wettability effects on relative permeability. Laboratory determination for the impact of wettability on relative permeability continues to be a challenge because of difficulties with quantifying wettability alteration, correcting for capillary-end effect, and observing pore-scale flow regimes during core-scale experiments. Herein, we studied the impact of wettability alteration on relative permeability by integrating laboratory steady-state experiments with in-situ high-resolution imaging. We characterized wettability alteration at the core scale by conventional laboratory methods and used history matching for relative permeability determination to account for capillary-end effect. We found that because of wettability alteration from water-wet to mixed-wet conditions, oil relative permeability decreased while water relative permeability slightly increased. For the mixed-wet condition, the pore-scale data demonstrated that the interaction of viscous and capillary forces resulted in viscous-dominated flow, whereby nonwetting phase was able to flow through the smaller regions of the pore space. Overall, this study demonstrates how special-core-analysis (SCAL) techniques can be coupled with pore-scale imaging to provide further insights on pore-scale flow regimes during dynamic coreflooding experiments.


1980 ◽  
Vol 20 (03) ◽  
pp. 191-205 ◽  
Author(s):  
Gary A. Pope

Introduction Fractional flow theory has been applied by various authors to waterflooding, polymer flooding, carbonated waterflooding, alcohol flooding, miscible flooding, steamflooding, and various types of surfactant flooding. Many of the assumptions made by these authors are the same and are necessary for obtaining simple analytical or graphical solutions to the continuity equations. Typically, the major assumptions, which are sometimes not stated explicitly, are:one dimensional flow in a homogeneous, isotropic, isothermal porous medium,at most, two phases are flowing,at most, three components are flowing,local equilibrium exists,the fluids are incompressible,for sorbing components, the adsorption isotherm depends only on one component and has negative curvature,dispersion is negligible,gravity and capillarity are negligible,no fingering occurs,Darcy's law applies,the initial distribution of fluids is uniform, anda continuous injection of constant composition is injected, starting at time zero. Several of these assumptions are relaxed easily. One of the most useful to relax is Assumption 12, continuous injection. The principles of chromatography can be applied to analyze the more interesting case of injecting one or more slugs. Most of these processes require slug injection of chemical or solvent to be economical. In fact, a lower bound on the slug size necessary to prevent slug breakdown can be obtained from a simple extension of fractional flow theory. In this and other extensions the common new feature is the need to evaluate more than one characteristic velocity. A second example of this is the extension of fractional flow theory from simultaneous immiscible two-phase flow (the classical Buckley-Leverett waterflood problem) to simultaneous immiscible three-phase flow (the classical oil/water/gas flow problem). A third example is the extension to nonisothermal cases. Here we need to consider the energy balance, mass balance, and velocity of a front of constant temperature. A fourth example is when one or more components are partitioning between phases. In all cases, mathematically, the extension is analogous to the generalization from the one-component adsorption problems (or two-component ion exchange problems with a stoichiometric constraint) to multicomponent sorption problems. The latter theory has been worked out in a very general way for many component systems using the concept of coherence. Pope et al. recently have applied this theory to reservoir engineering involving sorption problems. SPEJ P. 191^


SPE Journal ◽  
2012 ◽  
Vol 17 (03) ◽  
pp. 661-670 ◽  
Author(s):  
Rouzbeh Ghanbarnezhad-Moghanloo ◽  
Larry W. Lake

Summary This paper examines the limits of the Walsh and Lake (WL) method for predicting the displacement performance of solvent flood when miscibility is not achieved. Despite extensive research on the applications of fractional-flow theory, the prediction of flow performance under the loss of miscibility has not been investigated thoroughly. We introduce the idea of an analogous first-contact miscible (FCM) flood to study miscibly degraded simultaneous water and gas (SWAG) displacements using the WL method. Furthermore, numerical simulation is used to validate the WL solution on one oil/solvent pair. In the simulations, the loss of miscibility (degradation) is attributed to either flow-associated dispersion or insufficient pressure to develop the miscibility. 1D SWAG injection simulations suggest that results of the WL method and the simulations are consistent when dispersion is limited. For the 2D displacements, the predicted optimal water-alternating-gas (WAG) ratio is accurate when the permeable medium is fairly homogeneous with a limited crossflow or is heterogeneous with a large lateral correlation length (the same size or greater than the interwell spacing). The results suggest that the accuracy of the WL method improves as crossflow is reduced. In addition, linear growth of the mixing zone with time is observed in cases for which the predicted optimal WAG ratio is consistent with the simulation results. Hence, we conclude that the WL solution is accurate when the mixing zone grows linearly with time.


Sign in / Sign up

Export Citation Format

Share Document