A New Waterflood Initialization Protocol With Wettability Alteration for Pore-Scale Multiphase Flow Experiments

Author(s):  
Qingyang Lin ◽  
◽  
Branko Bijeljic ◽  
Samuel C. Krevor ◽  
Martin J. Blunt ◽  
...  
SPE Journal ◽  
2019 ◽  
Vol 24 (03) ◽  
pp. 1234-1247 ◽  
Author(s):  
Shuangmei Zou ◽  
Ryan T. Armstrong

Summary Wettability is a major factor that influences multiphase flow in porous media. Numerous experimental studies have reported wettability effects on relative permeability. Laboratory determination for the impact of wettability on relative permeability continues to be a challenge because of difficulties with quantifying wettability alteration, correcting for capillary-end effect, and observing pore-scale flow regimes during core-scale experiments. Herein, we studied the impact of wettability alteration on relative permeability by integrating laboratory steady-state experiments with in-situ high-resolution imaging. We characterized wettability alteration at the core scale by conventional laboratory methods and used history matching for relative permeability determination to account for capillary-end effect. We found that because of wettability alteration from water-wet to mixed-wet conditions, oil relative permeability decreased while water relative permeability slightly increased. For the mixed-wet condition, the pore-scale data demonstrated that the interaction of viscous and capillary forces resulted in viscous-dominated flow, whereby nonwetting phase was able to flow through the smaller regions of the pore space. Overall, this study demonstrates how special-core-analysis (SCAL) techniques can be coupled with pore-scale imaging to provide further insights on pore-scale flow regimes during dynamic coreflooding experiments.


2020 ◽  
Vol 10 (18) ◽  
pp. 6496
Author(s):  
Santiago Drexler ◽  
Fernanda Hoerlle ◽  
William Godoy ◽  
Austin Boyd ◽  
Paulo Couto

Carbon capture and storage is key for sustainable economic growth. CO2-enhanced oil recovery (EOR) methods are efficient practices to reduce emissions while increasing oil production. Although it has been successfully implemented in carbonate reservoirs, its effect on wettability and multiphase flow is still a matter of research. This work investigates the wettability alteration by carbonated water injection (CWI) on a coquina carbonate rock analogue of a Pre-salt reservoir, and its consequences in the flow of oil. The rock was characterized by routine petrophysical analysis and nuclear magnetic resonance. Moreover, micro-computed tomography was used to reconstruct the pore volume, capturing the dominant flow structure. Furthermore, wettability was assessed by contact angle measurement (before and after CWI) at reservoir conditions. Finally, pore-scale simulations were performed using the pore network modelling technique. The results showed that CWI altered the wettability of the carbonate rock from neutral to water-wet. In addition, the simulated relative permeability curves presented a shift in the crossover and imbibition endpoint values, indicating an increased flow capacity of oil after CWI. These results suggest that the wettability alteration mechanism contributes to enhancing the production of oil by CWI in this system.


Geofluids ◽  
2013 ◽  
Vol 14 (1) ◽  
pp. 95-105 ◽  
Author(s):  
J. G. Celauro ◽  
V. A. Torrealba ◽  
Z. T. Karpyn ◽  
K. A. Klise ◽  
S. A. McKenna

2021 ◽  
Vol 3 ◽  
Author(s):  
Maja Rücker ◽  
Apostolos Georgiadis ◽  
Ryan T. Armstrong ◽  
Holger Ott ◽  
Niels Brussee ◽  
...  

Core flooding experiments to determine multiphase flow in properties of rock such as relative permeability can show significant fluctuations in terms of pressure, saturation, and electrical conductivity. That is typically not considered in the Darcy scale interpretation but treated as noise. However, in recent years, flow regimes that exhibit spatio-temporal variations in pore scale occupancy related to fluid phase pressure changes have been identified. They are associated with topological changes in the fluid configurations caused by pore-scale instabilities such as snap-off. The common understanding of Darcy-scale flow regimes is that pore-scale phenomena and their signature should have averaged out at the scale of representative elementary volumes (REV) and above. In this work, it is demonstrated that pressure fluctuations observed in centimeter-scale experiments commonly considered Darcy-scale at fractional flow conditions, where wetting and non-wetting phases are co-injected into porous rock at small (<10−6) capillary numbers are ultimately caused by pore-scale processes, but there is also a Darcy-scale fractional flow theory aspect. We compare fluctuations in fractional flow experiments conducted on samples of few centimeters size with respective experiments and in-situ micro-CT imaging at pore-scale resolution using synchrotron-based X-ray computed micro-tomography. On that basis we can establish a systematic causality from pore to Darcy scale. At the pore scale, dynamic imaging allows to directly observe the associated breakup and coalescence processes of non-wetting phase clusters, which follow “trajectories” in a “phase diagram” defined by fractional flow and capillary number and can be used to categorize flow regimes. Connected pathway flow would be represented by a fixed point, whereas processes such as ganglion dynamics follow trajectories but are still overall capillary-dominated. That suggests that the origin of the pressure fluctuations observed in centimeter-sized fractional flow experiments are capillary effects. The energy scale of the pressure fluctuations corresponds to 105-106 times the thermal energy scale. This means the fluctuations are non-thermal. At the centimeter scale, there are non-monotonic and even oscillatory solutions permissible by the fractional flow theory, which allow the fluctuations to be visible and—depending on exact conditions—significant at centimeter scale, within the viscous limit of classical (Darcy scale) fractional flow theory. That also means that the phenomenon involves both capillary aspects from the pore or cluster scale and viscous aspects of fractional flow and occurs right at the transition, where the physical description concept changes from pore to Darcy scale.


2019 ◽  
Vol 99 (6) ◽  
Author(s):  
Qingyang Lin ◽  
Branko Bijeljic ◽  
Steffen Berg ◽  
Ronny Pini ◽  
Martin J. Blunt ◽  
...  

Fuel ◽  
2020 ◽  
Vol 271 ◽  
pp. 117675 ◽  
Author(s):  
Yongqiang Chen ◽  
Nilesh Kumar Jha ◽  
Duraid Al-Bayati ◽  
Maxim Lebedev ◽  
Mohammad Sarmadivaleh ◽  
...  

2013 ◽  
Vol 49 (9) ◽  
pp. 5973-5988 ◽  
Author(s):  
Qiang Sheng ◽  
Karsten Thompson

Sign in / Sign up

Export Citation Format

Share Document