scholarly journals Assimilation of Cosmogenic Neutron Counts for Improved Soil Moisture Prediction in a Distributed Land Surface Model

2021 ◽  
Vol 3 ◽  
Author(s):  
Amol Patil ◽  
Benjamin Fersch ◽  
Harrie-Jan Hendricks Franssen ◽  
Harald Kunstmann

Cosmic-Ray Neutron Sensing (CRNS) offers a non-invasive method for estimating soil moisture at the field scale, in our case a few tens of hectares. The current study uses the Ensemble Adjustment Kalman Filter (EAKF) to assimilate neutron counts observed at four locations within a 655 km2 pre-alpine river catchment into the Noah-MP land surface model (LSM) to improve soil moisture simulations and to optimize model parameters. The model runs with 100 m spatial resolution and uses the EU-SoilHydroGrids soil map along with the Mualem–van Genuchten soil water retention functions. Using the state estimation (ST) and joint state–parameter estimation (STP) technique, soil moisture states and model parameters controlling infiltration and evaporation rates were optimized, respectively. The added value of assimilation was evaluated for local and regional impacts using independent root zone soil moisture observations. The results show that during the assimilation period both ST and STP significantly improved the simulated soil moisture around the neutron sensors locations with improvements of the root mean square errors between 60 and 62% for ST and 55–66% for STP. STP could further enhance the model performance for the validation period at assimilation locations, mainly by reducing the Bias. Nevertheless, due to a lack of convergence of calculated parameters and a shorter evaluation period, performance during the validation phase degraded at a site further away from the assimilation locations. The comparison of modeled soil moisture with field-scale spatial patterns of a dense network of CRNS observations showed that STP helped to improve the average wetness conditions (reduction of spatial Bias from –0.038 cm3 cm−3 to –0.012 cm3 cm−3) for the validation period. However, the assimilation of neutron counts from only four stations showed limited success in enhancing the field-scale soil moisture patterns.

2021 ◽  
Author(s):  
Elizabeth Cooper ◽  
Eleanor Blyth ◽  
Hollie Cooper ◽  
Richard Ellis ◽  
Ewan Pinnington ◽  
...  

<p>Accurate soil moisture predictions from land surface models are important in hydrological, ecological and agricultural applications. Despite increasing availability of wide area soil moisture measurements, few studies have combined soil moisture predictions from models with in-situ observations beyond the point scale. This work uses the LAVENDAR data assimilation framework to markedly improve soil moisture estimates from the JULES land surface model using field scale Cosmic Ray Neutron sensor observations from the UKCEH COSMOS-UK network. Rather than directly updating modelled soil moisture estimates towards measured values, we optimize constants in the underlying pedotransfer functions (PTF) which relate soil texture to soil hydraulics parameters. In this way we generate a single set of newly calibrated PTFs based on field scale observations from a number of UK sites with different soil types. We demonstrate that calibrating PTFs in this way can improve the performance of JULES. Further, we suggest that calibrating PTFs for the soils on which they are to be used and at the scales at which land surface models are applied (rather than on small-scale soil samples) will ultimately improve the performance of land surface models, potentially leading to improvements in flood, drought and climate projections.</p>


Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1362 ◽  
Author(s):  
Mustafa Berk Duygu ◽  
Zuhal Akyürek

Soil moisture content is one of the most important parameters of hydrological studies. Cosmic-ray neutron sensing is a promising proximal soil moisture sensing technique at intermediate scale and high temporal resolution. In this study, we validate satellite soil moisture products for the period of March 2015 and December 2018 by using several existing Cosmic Ray Neutron Probe (CRNP) stations of the COSMOS database and a CRNP station that was installed in the south part of Turkey in October 2016. Soil moisture values, which were inferred from the CRNP station in Turkey, are also validated using a time domain reflectometer (TDR) installed at the same location and soil water content values obtained from a land surface model (Noah LSM) at various depths (0.1 m, 0.3 m, 0.6 m and 1.0 m). The CRNP has a very good correlation with TDR where both measurements show consistent changes in soil moisture due to storm events. Satellite soil moisture products obtained from the Soil Moisture and Ocean Salinity (SMOS), the METOP-A/B Advanced Scatterometer (ASCAT), Soil Moisture Active Passive (SMAP), Advanced Microwave Scanning Radiometer 2 (AMSR2), Climate Change Initiative (CCI) and a global land surface model Global Land Data Assimilation System (GLDAS) are compared with the soil moisture values obtained from CRNP stations. Coefficient of determination ( r 2 ) and unbiased root mean square error (ubRMSE) are used as the statistical measures. Triple Collocation (TC) was also performed by considering soil moisture values obtained from different soil moisture products and the CRNPs. The validation results are mainly influenced by the location of the sensor and the soil moisture retrieval algorithm of satellite products. The SMAP surface product produces the highest correlations and lowest errors especially in semi-arid areas whereas the ASCAT product provides better results in vegetated areas. Both global and local land surface models’ outputs are highly compatible with the CRNP soil moisture values.


2020 ◽  
Author(s):  
Amol Patil ◽  
Benjamin Fersch ◽  
Harrie-Jan Hendricks-Franssen ◽  
Harald Kunstmann

<p>Soil moisture is a key variable in atmospheric modelling to resolve the partitioning of net radiation into sensible and latent heat fluxes. Therefore, high resolution spatio-temporal soil moisture estimation is getting growing attention in this decade. The recent developments to observe soil moisture at field scale (170 to 250 m spatial resolution) using Cosmic Ray Neutron Sensing (CRNS) technique has created new opportunities to better resolve land surface atmospheric interactions; however, many challenges remain such as spatial resolution mismatch and estimation uncertainties. Our study couples the Noah-MP land surface model to the Data Assimilation Research Testbed (DART) for assimilating CRN intensities to update model soil moisture. For evaluation, the spatially distributed Noah-MP was set up to simulate the land surface variables at 1 km horizontal resolution for the Rott and Ammer catchments in southern Germany. The study site comprises the TERENO-preAlpine observatory with five CRNS stations and additional CRNS measurements for summer 2019 operated by our Cosmic Sense research group. We adjusted the soil parametrization in Noah-MP to allow the usage of EU soil data along with Mualem-van Genuchten soil hydraulic parameters. We use independent observations from extensive soil moisture sensor network (SoilNet) within the vicinity of CRNS sensors for validation. Our detailed synthetic and real data experiments are evaluated for the analysis of the spatio-temporal changes in updated root zone soil moisture and for implications on the energy balance component of Noah-MP. Furthermore, we present possibilities to estimate root zone soil parameters within the data assimilation framework to enhance standalone model performance.</p>


2020 ◽  
Author(s):  
Jiaxin Tian ◽  
Jun Qin ◽  
Kun Yang

<p>Soil moisture plays a key role in land surface processes. Both remote sensing and model simulation have their respective limitations in the estimation of soil moisture on a large spatial scale. Data assimilation is a promising way to merge remote sensing observation and land surface model (LSM), thus having a potential to acquire more accurate soil moisture. Two mainstream assimilation algorithms (variational-based and sequential-based) both need model and observation uncertainties due to their great impact on assimilation results. Besides, as far as land surface models are concerned, model parameters have a significant implication for simulation. However, how to specify these two uncertainties and parameters has been confusing for a long time. A dual-cycle assimilation algorithm, which consists of two cycles, is proposed for addressing the above issue. In the outer cycle, a cost function is constructed and minimized to estimate model parameters and uncertainties in both model and observation. In the inner cycle, a sequentially based filtering method is implemented to estimate soil moisture with the parameters and uncertainties estimated in the outer cycle. For the illustration of the effectiveness of the proposed algorithm, the Advanced Microwave Scanning Radiometer of earth Observing System (AMSR-E) brightness temperatures are assimilated into land surface model with a radiative transfer model as the observation operator in three experimental fields, including Naqu and Ngari on the Tibetan Plateau, and Coordinate Enhanced Observing (CEOP) reference site on Mongolia. The results indicate that the assimilation algorithm can significantly improve soil moisture estimation.</p>


2021 ◽  
Author(s):  
Natthachet Tangdamrongsub ◽  
Michael F. Jasinski ◽  
Peter Shellito

Abstract. Accurate estimation of terrestrial water storage (TWS) at a meaningful spatiotemporal resolution is important for reliable assessments of regional water resources and climate variability. Individual components of TWS include soil moisture, snow, groundwater, and canopy storage and can be estimated from the Community Atmosphere Biosphere Land Exchange (CABLE) land surface model. The spatial resolution of CABLE is currently limited to 0.5° by the resolution of soil and vegetation datasets that underlie model parameterizations, posing a challenge to using CABLE for hydrological applications at a local scale. This study aims to improve the spatial detail (from 0.5° to 0.05°) and timespan (1981–2012) of CABLE TWS estimates using rederived model parameters and high-resolution meteorological forcing. In addition, TWS observations derived from the Gravity Recovery and Climate Experiment (GRACE) satellite mission are assimilated into CABLE to improve TWS accuracy. The success of the approach is demonstrated in Australia, where multiple ground observation networks are available for validation. The evaluation process is conducted using four different case studies that employ different model spatial resolutions and include or omit GRACE data assimilation (DA). We find that the CABLE 0.05° developed here improves TWS estimates in terms of accuracy, spatial resolution, and long-term water resource assessment reliability. The inclusion of GRACE DA increases the accuracy of groundwater storage (GWS) estimates and has little impact on surface soil moisture or evapotranspiration. The use of improved model parameters and improved state estimations (via GRACE DA) together is recommended to achieve the best GWS accuracy. The workflow elaborated in this paper relies only on publicly accessible global datasets, allowing reproduction of the 0.05° TWS estimates in any study region.


2019 ◽  
Vol 46 (12) ◽  
pp. 6604-6613 ◽  
Author(s):  
Jianzhi Dong ◽  
Wade Crow ◽  
Rolf Reichle ◽  
Qing Liu ◽  
Fangni Lei ◽  
...  

2021 ◽  
Author(s):  
Nadia Ouaadi ◽  
Lionel Jarlan ◽  
Saïd Khabba ◽  
Jamal Ezzahar ◽  
Olivier Merlin

<p>Irrigation is the largest consumer of water in the world, with more than 70% of the world's fresh water dedicated to agriculture. In this context, we developed and evaluated a new method to predict daily to seasonal irrigation timing and amounts at the field scale using surface soil moisture (SSM) data assimilated into a simple  land surface model through a particle filter technique. The method is first tested using in situ SSM before using SSM products retrieved from Sentinel-1. Data collected on different wheat fields grown  in Morocco, for both flood and drip irrigation techniques, are used to assess the performance of the proposed method. With in situ data, the results are good. Seasonal amounts are retrieved with R > 0.98, RMSE <42 mm and bias<2 mm. Likewise, a good agreement is observed at the daily scale for flood irrigation where more than 70% of the irrigation events are detected with a time difference from actual irrigation events shorter than 4 days, when assimilating SSM observation every 6 days to mimics Sentinel-1 revisit time. Over the drip irrigated fields, the statistical metrics are R = 0.70, RMSE =28.5 mm and bias= -0.24 mm for irrigation amounts cumulated over 15 days. The approach is then evaluated using SSM products derived from Sentinel-1 data; statistical metrics are R= 0.64, RMSE= 28.78 mm and bias = 1.99 mm for irrigation amounts cumulated over 15 days. In addition to irrigated fields, the applicationof the developed methodover rainfed fieldsdid not detect any irrigation. This study opens perspectives for the regional retrieval of irrigation amounts and timing at the field scale and for mapping irrigated/non irrigated areas.</p>


2020 ◽  
Author(s):  
Elizabeth Cooper ◽  
Ewan Pinnington ◽  
Richard Ellis ◽  
Eleanor Blyth ◽  
Simon Dadson ◽  
...  

<p>Soil moisture predictions are increasingly important in hydrological, ecological and agricultural applications. In recent years the availability of wide-area assessments of current and future soil-moisture states has grown, yet few studies have combined model-based assessments with observations beyond the point scale. Here we use the JULES land surface model together with COSMOS-UK data to evaluate the extent to which data assimilation can improve predictions of soil moisture across the United Kingdom.</p><p>COSMOS-UK is a network of soil moisture sensors run by UKCEH. The network provides soil moisture measurements at around 50 sites throughout the UK using innovative Cosmic Ray Neutron Sensors (CRNS). Half hourly measurements of the meteorological variables that the Joint UK Land Environment Simulator (JULES) requires as driving data are also recorded at COSMOS-UK sites, allowing us to run JULES at observation locations. This provides a unique opportunity to compare soil moisture outputs from JULES with CRNS observations; these measurements have a footprint of up to 12 ha (approx 30 acres) and are therefore better scale matched with JULES outputs than those from point sensors.</p><p>We have used the Land Variational Ensemble Data Assimilation Framework (LaVEnDAR) to combine soil moisture estimates from JULES with daily CRNS observations from one year at a number of COSMOS-UK sites. We show that this results in improved soil moisture predictions from JULES over several years. This has been achieved by optimising parameters in the pedo-transfer function used to derive JULES soil physics parameters from soil texture information. Using data assimilation with LaVEnDAR in this way allows us to explore the relationships between soil moisture estimates, soil physics parameters and soil texture, as well as improving the agreement between JULES model outputs and observations.</p>


Sign in / Sign up

Export Citation Format

Share Document