scholarly journals Formation of the BeH+ and BeD+ Molecules in Be+ + H/D Collisions Through Radiative Association

Author(s):  
Péter Szabó ◽  
Szabolcs Góger ◽  
Magnus Gustafsson

Cross sections and rate coefficients for the formation of BeH+ and BeD+ molecules in Be+ + H/D collisions through radiative association are calculated using quantum mechanical perturbation theory and Breit-Wigner theory. The local thermodynamic equilibrium limit of the molecule formation is also studied, since the process is also relevant in environments with high-density and/or strong radiation fields. The obtained rate coefficients may facilitate the kinetic modelling of BeH+/BeD+ production in astrochemical environments as well as the corrosion chemistry of thermonuclear fusion reactors.

2020 ◽  
Vol 500 (2) ◽  
pp. 2496-2502
Author(s):  
Tianrui Bai ◽  
Zhi Qin ◽  
Linhua Liu

ABSTRACT The radiative association process for the formation of magnesium oxide (MgO) may be of great importance due to its frequent occurrence in the low-density and dust-poor astrochemical environments. In this work, the cross-sections and rate coefficients for the A1Π → X1Σ+, ${\rm X}^1\Sigma ^+\, \rightarrow \, {\rm A}^1\Pi$, D1Δ → A1Π, a3Π → e3Σ−, ${\rm X}^1\Sigma ^+\, \rightarrow \, {\rm X}^1\Sigma ^+$, and A1Π → A1Π radiative association processes of forming MgO are theoretically estimated. The cross-sections for the transitions between the different states are obtained by using the semiclassical method for direct contributions and the Breit–Wigner theory as a complement for resonance contributions. For the transitions between the same states, the quantum mechanical method is used. The rate coefficients are then obtained from the cross-sections for the temperatures in the range of 10–10 000 K and the results are found to vary from 4.69 $\times \, 10^{-16}$ to 6.27 $\times \, 10^{-14}$ cm3 s−1. For temperatures lower than around 693 K, the rate coefficients for the A1Π → X1Σ+ process are dominant, which indicates this process is the most efficient way of producing MgO at low temperatures. However, the rate coefficients for the D1Δ → A1Π process go through a rapid increase with increasing temperature and become dominant at higher temperatures. For other processes, their rate coefficients are several orders of magnitude lower than those for the two processes mentioned above. The results can be used to further investigate the formation and evolution of MgO in low density and hot gas close to the photosphere of evolved oxygen-rich stars.


2019 ◽  
Vol 489 (2) ◽  
pp. 2954-2960 ◽  
Author(s):  
Martina Zámečníková ◽  
Pavel Soldán ◽  
Magnus Gustafsson ◽  
Gunnar Nyman

ABSTRACT We theoretically estimate formation rate coefficients for CO+ through the radiative association of C+(2P) with O(3P). In 1989, Petuchowski et al. claimed radiative association to be the most important route for CO+ formation in SN 1987A. In 1990, Dalgarno, Du and You challenged this claim. Therefore, in this study, we improve previous estimates of the radiative association rate coefficients for forming CO+ from C+(2P) and O(3P). To do this, we perform quantum mechanically based perturbation theory calculations as well as semiclassical calculations, which are combined with Breit–Wigner theory in order to add the effect of shape resonances. We explicitly include four electronic transitions. The required potential energy and transition dipole-moment curves are obtained through large basis set multireference configuration interaction electronic structure calculations. We report cross-sections and from these we obtain rate coefficients in the range of 10 –10 000 K, finding that the CO+ formation rate coefficient is larger than the previous estimate by Dalgarno et al. Still our results support their claim that in SN 1987A, CO is mainly formed through radiative association and not through the charge transfer reaction CO+ + O → CO + O+ as earlier suggested by Petuchowski et al.


2020 ◽  
Vol 494 (4) ◽  
pp. 5675-5681 ◽  
Author(s):  
Sanchit Chhabra ◽  
T J Dhilip Kumar

ABSTRACT Molecular ions play an important role in the astrochemistry of interstellar and circumstellar media. C3H+ has been identified in the interstellar medium recently. A new potential energy surface of the C3H+–He van der Waals complex is computed using the ab initio explicitly correlated coupled cluster with the single, double and perturbative triple excitation [CCSD(T)-F12] method and the augmented correlation consistent polarized valence triple zeta (aug-cc-pVTZ) basis set. The potential presents a well of 174.6 cm−1 in linear geometry towards the H end. Calculations of pure rotational excitation cross-sections of C3H+ by He are carried out using the exact quantum mechanical close-coupling approach. Cross-sections for transitions among the rotational levels of C3H+ are computed for energies up to 600 cm−1. The cross-sections are used to obtain the collisional rate coefficients for temperatures T ≤ 100 K. Along with laboratory experiments, the results obtained in this work may be very useful for astrophysical applications to understand hydrocarbon chemistry.


2021 ◽  
Vol 507 (4) ◽  
pp. 5264-5271
Author(s):  
Manel Naouai ◽  
Abdelhak Jrad ◽  
Ayda Badri ◽  
Faouzi Najar

ABSTRACT Rotational inelastic scattering of silyl cyanide (SiH3CN) molecule with helium (He) atoms is investigated. Three-dimensional potential energy surface (3D-PES) for the SiH3CN–He interacting system is carried out. The ab initio 3D-PES is computed using explicitly correlated coupled cluster approach with single, double, and perturbative triple excitation CCSD(T)-F12a connected to augmented-correlation consistent-polarized valence triple zeta Gaussian basis set. A global minimum at (R = 6.35 bohr; θ = 90○; ϕ = 60○) with a well depth of 52.99 cm−1 is pointed out. Inelastic rotational cross-sections are emphasized for the 22 first rotational levels for total energy up to 500 cm−1 via close coupling (CC) approach in the case of A-SiH3CN and for the 24 first rotational levels for total energy up to 100 cm−1 via CC and from 100 to 500 cm−1 via coupled states (CS) in the case of E-SiH3CN. Rate coefficients are derived for temperature until 80 K for both A- and E-SiH3CN–He systems. Propensity rules are obtained for |ΔJ| = 2 processes with broken parity for A-SiH3CN and for |ΔJ| = 2 processes with |ΔK| = 0 and unbroken parity for E-SiH3CN.


2018 ◽  
Vol 620 ◽  
pp. A188 ◽  
Author(s):  
Valdas Jonauskas

Electron-impact single- and double-ionization cross sections and Maxwellian rate coefficients are presented for the carbon atom. Scaling factors are introduced for the electron-impact excitation and ionization cross sections obtained in the distorted wave (DW) approximation. It is shown that the scaled DW cross sections provide good agreement with measurements for the single ionization of the C atom and C1+ ion. The direct double-ionization (DDI) process is studied using a multi-step approach. Ionization–ionization, excitation–ionization–ionization, and ionization–excitation–ionization branches are analyzed. It is demonstrated that the three-step processes contribute ≼40% of the total DDI cross sections for the case where one of the electrons takes all of the excess energy after the first ionization process.


2018 ◽  
Vol 363 (3) ◽  
Author(s):  
Théophile Tchakoua ◽  
Mama Pamboundom ◽  
Berthelot Said Duvalier Ramlina Vamhindi ◽  
Serge Guy Nana Engo ◽  
Ousmanou Motapon ◽  
...  

Author(s):  
Christian Balança ◽  
Ernesto Quintas-Sánchez ◽  
Richard Dawes ◽  
Fabien Dumouchel ◽  
François Lique ◽  
...  

Abstract Carbon-chain anions were recently detected in the interstellar medium. These very reactive species are used as tracers of the physical and chemical conditions in a variety of astrophysical environments. However, the Local Thermodynamical Equilibrium conditions are generally not fulfilled in these environments. Therefore, collisional as well as radiative rates are needed to accurately model the observed emission lines. We determine in this work the state-to-state rate coefficients of C4H− in collision with both ortho- and para-H2. A new ab initio 4D potential energy surface was computed using explicitly-correlated coupled cluster procedures. This surface was then employed to determine rotational excitation and de-excitation cross sections and rate coefficients for the first 21 rotational levels (up to rotational level j1 = 20) using the close-coupling method, while the coupled-state approximation was used to extend the calculations up to j1 = 30. State-to-state rate coefficients were obtained for the temperature range 2–100 K. The differences between the ortho- and para-H2 rate coefficients are found to be small.


Sign in / Sign up

Export Citation Format

Share Document