quantum mechanical method
Recently Published Documents


TOTAL DOCUMENTS

76
(FIVE YEARS 15)

H-INDEX

21
(FIVE YEARS 2)

2022 ◽  
Vol 130 (1) ◽  
pp. 11
Author(s):  
С.В. Краснощеков ◽  
И.К. Гайнуллин ◽  
В.Б. Лаптев ◽  
С.А. Климин

The IR transmittance spectrum of an isotopic mixture of chlorodifluoromethane (CHF2Cl, Freon-22) with a 33% fraction of 13C and a natural ratio of chlorine isotopes was measured in the frequency range 1400-740 cm–1 with a resolution of 0.001 cm–1 at a temperature of 20C. An ab initio calculation of the structure and sextic potential energy surface and surfaces of the components of the dipole moment has been carried out by the the electronic quantum-mechanical method of Möller-Plesset, MP2/cc-pVTZ. Then the potential was optimized by replacing the harmonic frequencies with the frequencies calculated by the electronic method of coupled clusters, CCSD(T)/aug-cc-pVQZ. The fundamental and combination frequencies were calculated using the operator perturbation theory of Van Vleck (CVPTn) of the second and fourth order (n=2,4). Resonance effects were modeled using an additional variational calculation in the basis up to fourfold VCI excitation (4). The average prediction error for the fundamental frequencies of the 12C isotopologues was ~1.5 cm–1. The achieved accuracy made it possible to reliably predict the isotopic frequency shifts of the 13C isotopologues. It is shown that the strong Fermi resonance ν4/2ν6 dominates in the 12C isotopologues and is practically absent in 13C. The literature assumption [Spectrochim. Acta A, 44: 553] about the splitting of ν1 (CH) due to the resonance ν1/ν2+ν7+ν9 is confirmed. The coefficients of the polyadic quantum number are determined. The analysis made it possible to carry out a preliminary identification of the centers of the vibrational-rotational bands of isotopologues 13CHF235Cl и 13CHF237Cl in the spectrum of the mixture in preparation for individual analyzes of the vibrational-rotational structures of individual vibrational transitions.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Peikun Zheng ◽  
Roman Zubatyuk ◽  
Wei Wu ◽  
Olexandr Isayev ◽  
Pavlo O. Dral

AbstractHigh-level quantum mechanical (QM) calculations are indispensable for accurate explanation of natural phenomena on the atomistic level. Their staggering computational cost, however, poses great limitations, which luckily can be lifted to a great extent by exploiting advances in artificial intelligence (AI). Here we introduce the general-purpose, highly transferable artificial intelligence–quantum mechanical method 1 (AIQM1). It approaches the accuracy of the gold-standard coupled cluster QM method with high computational speed of the approximate low-level semiempirical QM methods for the neutral, closed-shell species in the ground state. AIQM1 can provide accurate ground-state energies for diverse organic compounds as well as geometries for even challenging systems such as large conjugated compounds (fullerene C60) close to experiment. This opens an opportunity to investigate chemical compounds with previously unattainable speed and accuracy as we demonstrate by determining geometries of polyyne molecules—the task difficult for both experiment and theory. Noteworthy, our method’s accuracy is also good for ions and excited-state properties, although the neural network part of AIQM1 was never fitted to these properties.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4486
Author(s):  
Chenfei Shen ◽  
Xinsheng Jin ◽  
William J. Glover ◽  
Xiao He

Many experiments have been carried out to display different colors of Proteorhodopsin (PR) and its mutants, but the mechanism of color tuning of PR was not fully elucidated. In this study, we applied the Electrostatically Embedded Generalized Molecular Fractionation with Conjugate Caps (EE-GMFCC) method to the prediction of excitation energies of PRs. Excitation energies of 10 variants of Blue Proteorhodopsin (BPR-PR105Q) in residue 105GLN were calculated with the EE-GMFCC method at the TD-B3LYP/6-31G* level. The calculated results show good correlation with the experimental values of absorption wavelengths, although the experimental wavelength range among these systems is less than 50 nm. The ensemble-averaged electric fields along the polyene chain of retinal correlated well with EE-GMFCC calculated excitation energies for these 10 PRs, suggesting that electrostatic interactions from nearby residues are responsible for the color tuning. We also utilized the GMFCC method to decompose the excitation energy contribution per residue surrounding the chromophore. Our results show that residues ASP97 and ASP227 have the largest contribution to the absorption spectral shift of PR among the nearby residues of retinal. This work demonstrates that the EE-GMFCC method can be applied to accurately predict the absorption spectral shifts for biomacromolecules.


2021 ◽  
Vol 7 (25) ◽  
pp. eabf7672
Author(s):  
Ziyao Xu ◽  
Yi Zhou ◽  
Chi Yung Yam ◽  
Lynn Groß ◽  
Antonietta De Sio ◽  
...  

Using an innovative quantum mechanical method for an open quantum system, we observe in real time and space the generation, migration, and dissociation of electron-hole pairs, transport of electrons and holes, and current emergence in an organic photovoltaic cell. Ehrenfest dynamics is used to study photoexcitation of thiophene:fullerene stacks coupled with a time-dependent density functional tight-binding method. Our results display the generation of an electron-hole pair in the donor and its subsequent migration to the donor-acceptor interface. At the interface, electrons transfer from the lowest unoccupied molecular orbitals (LUMOs) of thiophenes to the second LUMOs of fullerene. Further migration of electrons and holes leads to the emergence of current. These findings support previous experimental evidence of coherent couplings between electronic and vibrational degrees of freedom and are expected to stimulate further work toward exploring the interplay between electron-hole pair (exciton) binding and vibronic coupling for charge separation and transport.


2021 ◽  
pp. 1396-1403
Author(s):  
Rehab Majed Kubba ◽  
Nada Mohammed Al-Joborry

A newly derivative of oxazolidin-5- one namely [2-(2-biphenyl-4-yl-imidazo [1,2-a] pyridine-3-yl)-3-(4-nitro-phenyl)-oxazolidin-5-one (BIPNO5)] was examined as an corrosion inhibitor for carbon steel surface. Quantum mechanical method of Density Functional Theory (DFT) with (B3LYP (6-311++G (2d, 2p)) level of theory was used to calculate the minimize structure, physical properties and inhibition chemical parameters, in vacuum and two solvents (DMSO and H2O), all at equilibrium geometry. The results indicated that the new derivative could adsorb on the surface of carbon steel through the heteroatom, showing that the new inhibitor has good corrosion inhibition performance.


2020 ◽  
pp. 2776-2796
Author(s):  
Rehab M Kubba ◽  
Nada M. Al-Joborry ◽  
Naeemah J. Al-lami

Two derivatives of Iimidazolidin 4-one (IMID4) and Oxazolidin 5-one (OXAZ5), were investigated as corrosion inhibitors of corrosion carbon steel in sea water by employing the theoretical and experimental methods. The results revealed that they inhibit the corrosion process and their %IE followed the order: IMID4 (89.093%) > OXAZ5 (80.179%). The %IE obtained via theoretical and experimental methods were in a good agreement with each other. The thermodynamic parameters obtained by potentiometric polarization measurements have supported a physical adsorption mechanism which followed Langmuir adsorption isotherm. Quantum mechanical method of Density Functional Theory (DFT) of B3LYP with a level of 6-311++G (2d, 2p) were used to calculate the geometrical structure, physical properties and inhibition efficiency parameters, in vacuum and two solvents (DMSO and H2O), all calculated at the equilibrium geometry, and correlated with the experimental %IE. The local reactivity has been studied through Mulliken charges population analysis. The morphology of the surface changes of carbon steel were studied using SEM and AFM techniques.


2020 ◽  
Vol 500 (2) ◽  
pp. 2496-2502
Author(s):  
Tianrui Bai ◽  
Zhi Qin ◽  
Linhua Liu

ABSTRACT The radiative association process for the formation of magnesium oxide (MgO) may be of great importance due to its frequent occurrence in the low-density and dust-poor astrochemical environments. In this work, the cross-sections and rate coefficients for the A1Π → X1Σ+, ${\rm X}^1\Sigma ^+\, \rightarrow \, {\rm A}^1\Pi$, D1Δ → A1Π, a3Π → e3Σ−, ${\rm X}^1\Sigma ^+\, \rightarrow \, {\rm X}^1\Sigma ^+$, and A1Π → A1Π radiative association processes of forming MgO are theoretically estimated. The cross-sections for the transitions between the different states are obtained by using the semiclassical method for direct contributions and the Breit–Wigner theory as a complement for resonance contributions. For the transitions between the same states, the quantum mechanical method is used. The rate coefficients are then obtained from the cross-sections for the temperatures in the range of 10–10 000 K and the results are found to vary from 4.69 $\times \, 10^{-16}$ to 6.27 $\times \, 10^{-14}$ cm3 s−1. For temperatures lower than around 693 K, the rate coefficients for the A1Π → X1Σ+ process are dominant, which indicates this process is the most efficient way of producing MgO at low temperatures. However, the rate coefficients for the D1Δ → A1Π process go through a rapid increase with increasing temperature and become dominant at higher temperatures. For other processes, their rate coefficients are several orders of magnitude lower than those for the two processes mentioned above. The results can be used to further investigate the formation and evolution of MgO in low density and hot gas close to the photosphere of evolved oxygen-rich stars.


2020 ◽  
Vol 4 (3) ◽  
pp. 672-678
Author(s):  
Babatunde Temitope Ogunyemi ◽  
Sunday Gbenga Borisade

The effect of two iminoisatin derivatives [1-morpholinomethyl-3(1-N-dithiooxamide) iminoisatin (molecule 1)] and 1-diphenylaminomethyl-3(1-N-dithiooxamide) iminoisatin (molecule 2) on corrosion inhibition were theoretically investigated using quantum mechanical method. Their electronic parameters and quantum chemical descriptors that predict their adsorption and hence their inhibition efficiency were estimated using the DFT//B3LYP/6-31G (d) method. The results established a relationship between the quantum descriptors and corrosion inhibition efficiency, and also confirmed molecule 2 to be a better corrosion inhibitor and provide a guide to the synthesis of more efficient organic corrosion inhibitors.


Sign in / Sign up

Export Citation Format

Share Document