scholarly journals The Ability of Conservation Agriculture to Conserve Soil Organic Carbon and the Subsequent Impact on Soil Physical, Chemical, and Biological Properties and Yield

Author(s):  
Kathryn Louise Page ◽  
Yash P. Dang ◽  
Ram C. Dalal
CATENA ◽  
2013 ◽  
Vol 110 ◽  
pp. 70-85 ◽  
Author(s):  
Barbara Zollinger ◽  
Christine Alewell ◽  
Christof Kneisel ◽  
Katrin Meusburger ◽  
Holger Gärtner ◽  
...  

2016 ◽  
Vol 66 (1) ◽  
Author(s):  
Gustavo Alvarez Arteaga ◽  
Belina García Fajardo ◽  
María Estela Orozco Hernández ◽  
Patricia Mireles Lezama ◽  
Julieta Contreras Martínez

The loss of organic carbon stocks from the soil and their expulsion into the atmosphere due to the effect of anthropogenic activities must be understood as a problem that goes beyond the environmental to the social and economic context, with the soil degradation being just one of its many impacts. While the accumulation of carbon in the soil depends naturally on the interaction among a series of biotic and abiotic factors, management practices often cause the deterioration of its physical, chemical and biological properties, and, thus, increase the levels of mineralization and a reduction in carbon stocks. This research was undertaken in the municipality of San José del Rincón, State of Mexico, in volcanic soils under different conditions of soil use and disturbation time periods. Samples were obtained at 11 plots, on which physical and chemical analyses were undertaken, obtaining soil organic carbon stocks at 20 cm top soil. The results indicated that, for the soils used for agriculture and induced pasture, there were significant increases in the bulk density, greater acidity and a decrease in carbon concentration compared to forest soils. The organic carbon stocks taken from soils used in forestry, agriculture and induced pasture at a depth of 20 cm were 131, 53 and 63 Mg C ha-1 respectively, results which suggest the timing and intensity of management are determinants in the loss of soil organic carbon stocks from the soil, as well as the alteration of some of their physical and chemical properties.


Author(s):  
Jean-Francois Rochecouste ◽  
Paul Dargusch

This paper examines opportunities for the United Nations Framework Convention on Climate Change (UNFCCC) to consider financial mechanisms for the uptake of conservation agriculture (CA) practices in developing countries to reverse the loss of soil organic carbon. Conservation agriculture, commonly described as the reduction of tillage, maintaining soil cover and introducing crop rotations, is currently being promoted by the United Nations Food and Agriculture Organisation as the most sustainable form of farming into the future. It was found that the increasing uptake of CA practices by developed countries improved soil organic carbon benefit and reduced energy inputs. Furthermore industrial agriculture has evolved a range of new technologies that can be adapted in developing countries to improve food security, increase environmental benefits and provide carbon offsets. This is in line with the climate change mitigation strategy of putting atmospheric carbon back in the soil to increase soil organic carbon. It is also noted that recognising conservation agriculture methodologies in carbon offset schemes would require the development of alternative economic instruments specifically to support small landholder changes in farming practices such as exist for hydrological and biodiversity ecosystem services schemes. Some of the constraints for small landowners providing agricultural carbon offsets are investment capital and an established trading mechanism that recognises the inherent issues of agriculture. Adaptation of conservation agricultural practices from industrialised agriculture to developing countries is examined along with current offset schemes being proposed in developed countries. A review of the literature examines Payment for Ecosystem Services (PES) and suggests a number of methodologies for consideration as part of an offset market. It was found that the two main obstacles in market terms are the acceptance of a level of soil carbon sequestration that can be easily calculated and the degree of attached liability for farmers in selling the equivalent of a Certified Emission Reduction unit from a highly volatile system.


2021 ◽  
Author(s):  
Tommaso Tadiello ◽  
Marco Acutis ◽  
Alessia Perego ◽  
Calogero Schillaci ◽  
Elena Valkama

<p>Mediterranean and humid subtropical climate is characterized by hot summer and cold to mild winter with a medium-low soil organic carbon (SOC) content and high risk of land desertification. Recent EU policies pointed out the need to preserve the SOC stock and to enhance its accumulation by promoting the adoption of conservation agriculture (CA) as an efficient action for climate change adaptation and mitigation. The meta-analysis is a powerful data analysis tool, which can be useful to evaluate the effectiveness of CA in increase SOC in comparison with conventional agriculture. In fact, this topic has been addressed by several published articles even though the methodology shortcomings make sometimes difficult to draw reliable conclusions about the contribution of CA. In our work, we applied a robust methodology to comply with the meta-analytic assumptions, such as an independence of effect sizes and weighting, as well as the requirement to use no predictive functions like pedotransfer. Therefore, the present meta-analysis defines a conservative and replicable approach to deal with soil carbon data, explaining the differences between conventional (control) and CA management (treatment) in terms of SOC stock accumulation in the first 0-0.3 m layer. A defined methodology was developed to summarize carbon data within a unique soil layer taking into account the real variance and correlation between different initial soil carbon layers. A final database of 49 studies has been used to summarize the effect and to explain the heterogeneity across studies, including also several pedoclimatic moderators in the analysis. An overall positive effect of about 13 % change in SOC accumulation was found due to CA practices compared to control. To better explain the data variability, we created two different groups of studies ("low carbon in control, LC" and "high carbon in control", HC) base on the amount of SOC in control (with 40 Mg ha<sup>-1</sup> as a threshold). This method leads to more reliable conclusions that it is more likely to find a response to CA management in soil with low carbon content rather than in soil that have more than 40 t C stock ha<sup>-1</sup> . A positive correlation was also found between clay soils with high carbon content in control and carbon sequestration event though the texture classification did not explain data variability. Agronomic management plays an essential role in inducing C accumulation under CA in both LC and HC groups, especially with high residue retention during long-term experiments (0.21 Mg C ha<sup>-1</sup> yr<sup>-1</sup> for the whole database). We also found that climatic and geographical moderators can explain the variability among the effect sizes, like the absolute value of latitude or the precipitation during the year, even though the different continent or climate Köppen classification did not give significant results.</p>


Sign in / Sign up

Export Citation Format

Share Document