scholarly journals Genetic Diversity in the Italian Holstein Dairy Cattle Based on Pedigree and SNP Data Prior and After Genomic Selection

2022 ◽  
Vol 8 ◽  
Author(s):  
Michela Ablondi ◽  
Alberto Sabbioni ◽  
Giorgia Stocco ◽  
Claudio Cipolat-Gotet ◽  
Christos Dadousis ◽  
...  

Genetic diversity has become an urgent matter not only in small local breeds but also in more specialized ones. While the use of genomic data in livestock breeding programs increased genetic gain, there is increasing evidence that this benefit may be counterbalanced by the potential loss of genetic variability. Thus, in this study, we aimed to investigate the genetic diversity in the Italian Holstein dairy cattle using pedigree and genomic data from cows born between 2002 and 2020. We estimated variation in inbreeding, effective population size, and generation interval and compared those aspects prior to and after the introduction of genomic selection in the breed. The dataset contained 84,443 single-nucleotide polymorphisms (SNPs), and 74,485 cows were analyzed. Pedigree depth based on complete generation equivalent was equal to 10.67. A run of homozygosity (ROH) analysis was adopted to estimate SNP-based inbreeding (FROH). The average pedigree inbreeding was 0.07, while the average FROH was more than double, being equal to 0.17. The pattern of the effective population size based on pedigree and SNP data was similar although different in scale, with a constant decrease within the last five generations. The overall inbreeding rate (ΔF) per year was equal to +0.27% and +0.44% for Fped and FROH throughout the studied period, which corresponded to about +1.35% and +2.2% per generation, respectively. A significant increase in the ΔF was found since the introduction of genomic selection in the breed. This study in the Italian Holstein dairy cattle showed the importance of controlling the loss of genetic diversity to ensure the long-term sustainability of this breed, as well as to guarantee future market demands.

2021 ◽  
Author(s):  
Michaela Halsey ◽  
John Stuhler ◽  
Natalia J Bayona-Vasquez ◽  
Roy N Platt ◽  
Jim R Goetze ◽  
...  

Organisms with low effective population sizes are at greater risk of extinction because of reduced genetic diversity.   Dipodomys elator  is a kangaroo rat that is classified as threatened in Texas and field surveys from the past 50 years indicate that the distribution of this species has decreased. This suggests geographic range reductions that could have caused population fluctuations, potentially impacting effective population size. Conversely, the more common and widespread  D. ordii  is thought to exhibit relative geographic and demographic stability. Genetic variation between  D. elator  and  D. ordii  samples was assessed using 3RAD, a modified restriction site associated sequencing approach. It was hypothesized that  D. elator  would show lower levels of nucleotide diversity, observed heterozygosity, and effective population size when compared to  D. ordii . Also of interest was identifying population structure within contemporary samples of  D. elator  and detecting genetic variation between temporal samples that could indicate demographic dynamics. Up to 61,000 single nucleotide polymorphisms were analyzed. It was determined that genetic variability and effective population size in contemporary  D. elator  populations were lower than that of  D. ordii, that there is only slight, if any, structure within contemporary  D. elator  populations, and there is little genetic differentiation between spatial or temporal historical samples suggesting little change in nuclear genetic diversity over 30 years. Results suggest that genetic diversity of  D. elator  has remained stable despite claims of reduced population size and/or abundance, which may indicate a metapopulation-like system, whose fluctuations might counteract any immediate decrease in fitness.


Animals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2233
Author(s):  
Yoel Rodríguez-Valera ◽  
Dominique Rocha ◽  
Michel Naves ◽  
Gilles Renand ◽  
Eliecer Pérez-Pineda ◽  
...  

Inbreeding and effective population size (Ne) are fundamental indicators for the management and conservation of genetic diversity in populations. Genomic inbreeding gives accurate estimates of inbreeding, and the Ne determines the rate of the loss of genetic variation. The objective of this work was to study the distribution of runs of homozygosity (ROHs) in order to estimate genomic inbreeding (FROH) and an effective population size using 38,789 Single Nucleotide Polymorphisms (SNPs) from the Illumina Bovine 50K BeadChip in 86 samples from populations of Charolais de Cuba (n = 40) cattle and to compare this information with French (n = 20) and British Charolais (n = 26) populations. In the Cuban, French, and British Charolais populations, the average estimated genomic inbreeding values using the FROH statistics were 5.7%, 3.4%, and 4%, respectively. The dispersion measured by variation coefficient was high at 43.9%, 37.0%, and 54.2%, respectively. The effective population size experienced a very similar decline during the last century in Charolais de Cuba (from 139 to 23 individuals), in French Charolais (from 142 to 12), and in British Charolais (from 145 to 14) for the ~20 last generations. However, the high variability found in the ROH indicators and FROH reveals an opportunity for maintaining the genetic diversity of this breed with an adequate mating strategy, which can be favored with the use of molecular markers. Moreover, the detected ROH were compared to previous results obtained on the detection of signatures of selection in the same breed. Some of the observed signatures were confirmed by the ROHs, emphasizing the process of adaptation to tropical climate experienced by the Charolais de Cuba population.


2016 ◽  
Vol 65 (1) ◽  
pp. 59-66 ◽  
Author(s):  
Y. C. Miao ◽  
Z. J. Zhang ◽  
J. R. Su

Abstract Taxus yunnanensis, which is an endangered tree that is considered valuable because it contains the effective natural anticancer metabolite taxol and heteropolysaccharides, has long suffered from severe habitat fragmentation. In this study, the levels of genetic diversity in two populations of 136 individuals were analyzed based on eleven polymorphic microsatellite loci. Our results suggested that these two populations were characterized by low genetic diversity (NE = 2.303/2.557; HO = 0.168/0.142; HE = 0.453/0.517), a population bottleneck, a low effective population size (Ne = 7/9), a high level of inbreeding (FIS = 0.596/0.702), and a weak, but significant spatial genetic structure (Sp = 0.001, b = −0.001*). Habitat fragmentation, seed shadow overlap and limited seed and pollen dispersal and potential selfing may have contributed to the observed gene tic structure. The results of the present study will enable development of practical conservation measures to effectively conserve the valuable genetic resources of this endangered plant.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10348
Author(s):  
Austin S. Chipps ◽  
Amanda M. Hale ◽  
Sara P. Weaver ◽  
Dean A. Williams

There are increasing concerns regarding bat mortality at wind energy facilities, especially as installed capacity continues to grow. In North America, wind energy development has recently expanded into the Lower Rio Grande Valley in south Texas where bat species had not previously been exposed to wind turbines. Our study sought to characterize genetic diversity, population structure, and effective population size in Dasypterus ega and D. intermedius, two tree-roosting yellow bats native to this region and for which little is known about their population biology and seasonal movements. There was no evidence of population substructure in either species. Genetic diversity at mitochondrial and microsatellite loci was lower in these yellow bat taxa than in previously studied migratory tree bat species in North America, which may be due to the non-migratory nature of these species at our study site, the fact that our study site is located at a geographic range end for both taxa, and possibly weak ascertainment bias at microsatellite loci. Historical effective population size (NEF) was large for both species, while current estimates of Ne had upper 95% confidence limits that encompassed infinity. We found evidence of strong mitochondrial differentiation between the two putative subspecies of D. intermedius (D. i. floridanus and D. i. intermedius) which are sympatric in this region of Texas, yet little differentiation using microsatellite loci. We suggest this pattern is due to secondary contact and hybridization and possibly incomplete lineage sorting at microsatellite loci. We also found evidence of some hybridization between D. ega and D. intermedius in this region of Texas. We recommend that our data serve as a starting point for the long-term genetic monitoring of these species in order to better understand the impacts of wind-related mortality on these populations over time.


Animals ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 361 ◽  
Author(s):  
Shuqi Diao ◽  
Shuwen Huang ◽  
Zhiting Xu ◽  
Shaopan Ye ◽  
Xiaolong Yuan ◽  
...  

To investigate the genetic diversity, population structure, extent of linkage disequilibrium (LD), effective population size (Ne), and selection signatures in indigenous pigs from Guangdong and Guangxi in China, 226 pigs belonging to ten diverse populations were genotyped using single nucleotide polymorphism (SNP) chips. The genetic divergence between Chinese and Western pigs was determined based on the SNP chip data. Low genetic diversity of Dahuabai (DHB), Luchuan (LC), Lantang (LT), and Meihua (MH) pigs, and introgression of Western pigs into Longlin (LL), MH, and Yuedonghei (YDH) pigs were detected. Analysis of the extent of LD showed that indigenous pigs had low LD when pairwise SNP distance was short and high LD when pairwise SNP distance was long. Effective population size analysis showed a rapid decrease for Chinese indigenous pigs, and some pig populations had a relatively small Ne. This result indicated the loss of genetic diversity in indigenous pigs, and introgression from Western commercial pigs. Selection signatures detected in this study overlapped with meat quality traits, such as drip loss, intramuscular fat content, meat color b*, and average backfat thickness. Our study deepened understanding of the conservation status and domestication of Chinese indigenous pigs.


Sign in / Sign up

Export Citation Format

Share Document