scholarly journals Study of Electrical Properties of Silver Nanoparticles on Porous Silicon

2021 ◽  
Vol 30 (4) ◽  
pp. 28-36
Author(s):  
Mohammed alsaalihiu ◽  
Ghazwan Al Nuaimi
Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2165 ◽  
Author(s):  
Rehab Ramadan ◽  
Raúl J. Martín-Palma

The accurate determination of the electrical properties of photovoltaic devices is of utmost importance to predict and optimize their overall optoelectronic performance. For example, the minority carrier lifetime and the carrier diffusion length have a strong relationship with the carrier recombination rate. Additionally, parasitic resistances have an important effect on the fill factor of a solar cell. Within this context, the alternating current (AC) and direct current (DC) electrical characteristics of Si-based metal–insulator–semiconductor (MIS) Schottky barrier diodes with the basic structure Al/Si/TiO2/NiCr were studied, aiming at using them as photovoltaic devices. The basic diode structure was modified by adding nanostructured porous silicon (nanoPS) layers and by infiltrating silver nanoparticles (AgNPs) into the nanoPS layers, leading to Al/Si+nanoPS/TiO2/NiCr and Al/Si+nanoPS+AgNPs/TiO2/NiCr structures, respectively. The AC electrical properties were studied using a combination of electrochemical impedance spectroscopy and Mott–Schottky analysis, while the DC electrical properties were determined from current–voltage measurements. From the experimental results, an AC equivalent circuit model was proposed for the three different MIS Schottky barrier diodes under study. Additionally, the most significant electrical parameters were calculated. The results show a remarkable improvement in the performance of the MIS Schottky barrier diodes upon the addition of hybrid nanoPS layers with embedded Ag nanoparticles, opening the way to their use as photovoltaic devices.


2013 ◽  
Vol 16 (4) ◽  
pp. 145-115 ◽  
Author(s):  
Ban K. Mohamid ◽  
◽  
Uday M. Nayef ◽  
Zena F. Kadem ◽  
◽  
...  

2017 ◽  
Vol 24 (03) ◽  
pp. 1750038 ◽  
Author(s):  
A. M. ABDEL REHEEM ◽  
A. ATTA ◽  
T. A. AFIFY

In this work, PVA/Ag nanocomposites films were prepared using solution casting technique, these films were irradiated with Argon ion beam to modify the structure. The main objective of the study is to enhance the optical and electrical properties of the polymer nanocomposites films by irradiation. The conventional characterization techniques such as UV–Visible spectroscopy, X-ray diffraction (XRD), Fourier transform infrared (FTIR), transmission electron microscope (TEM) and dielectric measurement are employed to understand the structure–property relations. FTIR analysis of these composite films shows chemical changes and a significant impact on them can be observed after irradiation. After doping, the XRD data shows silver nanoparticles formation in the PVA polymer. The band gap energy of samples is decreased with increases in the concentration of silver nanoparticles and ion beam fluence, which gives clear indication that ion beam irradiation induced defects are formed in the composite systems. The electrical conductivity, dielectric loss [Formula: see text] and dielectric constant [Formula: see text] are increased with increasing ion beam fluence and Ag dopant concentration.


Sign in / Sign up

Export Citation Format

Share Document