scholarly journals A Comparative Study of Four Metaheuristic Algorithms, AMOSA, MOABC, MSPSO, and NSGA-II for Evacuation Planning

Algorithms ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 16 ◽  
Author(s):  
Olive Niyomubyeyi ◽  
Tome Eduardo Sicuaio ◽  
José Ignacio Díaz González ◽  
Petter Pilesjö ◽  
Ali Mansourian

Evacuation planning is an important activity in disaster management to reduce the effects of disasters on urban communities. It is regarded as a multi-objective optimization problem that involves conflicting spatial objectives and constraints in a decision-making process. Such problems are difficult to solve by traditional methods. However, metaheuristics methods have been shown to be proper solutions. Well-known classical metaheuristic algorithms—such as simulated annealing (SA), artificial bee colony (ABC), standard particle swarm optimization (SPSO), genetic algorithm (GA), and multi-objective versions of them—have been used in the spatial optimization domain. However, few types of research have applied these classical methods, and their performance has not always been well evaluated, specifically not on evacuation planning problems. This research applies the multi-objective versions of four classical metaheuristic algorithms (AMOSA, MOABC, NSGA-II, and MSPSO) on an urban evacuation problem in Rwanda in order to compare the performances of the four algorithms. The performances of the algorithms have been evaluated based on the effectiveness, efficiency, repeatability, and computational time of each algorithm. The results showed that in terms of effectiveness, AMOSA and MOABC achieve good quality solutions that satisfy the objective functions. NSGA-II and MSPSO showed third and fourth-best effectiveness. For efficiency, NSGA-II is the fastest algorithm in terms of execution time and convergence speed followed by AMOSA, MOABC, and MSPSO. AMOSA, MOABC, and MSPSO showed a high level of repeatability compared to NSGA-II. It seems that by modifying MOABC and increasing its effectiveness, it could be a proper algorithm for evacuation planning.

2019 ◽  
Vol 8 (3) ◽  
pp. 110 ◽  
Author(s):  
Olive Niyomubyeyi ◽  
Petter Pilesjö ◽  
Ali Mansourian

Evacuation is an important activity for reducing the number of casualties and amount of damage in disaster management. Evacuation planning is tackled as a spatial optimization problem. The decision-making process for evacuation involves high uncertainty, conflicting objectives, and spatial constraints. This study presents a Multi-Objective Artificial Bee Colony (MOABC) algorithm, modified to provide a better solution to the evacuation problem. The new approach combines random swap and random insertion methods for neighborhood search, the two-point crossover operator, and the Pareto-based method. For evacuation planning, two objective functions were considered to minimize the total traveling distance from an affected area to shelters and to minimize the overload capacity of shelters. The developed model was tested on real data from the city of Kigali, Rwanda. From computational results, the proposed model obtained a minimum fitness value of 5.80 for capacity function and 8.72 × 108 for distance function, within 161 s of execution time. Additionally, in this research we compare the proposed algorithm with Non-Dominated Sorting Genetic Algorithm II and the existing Multi-Objective Artificial Bee Colony algorithm. The experimental results show that the proposed MOABC outperforms the current methods both in terms of computational time and better solutions with minimum fitness values. Therefore, developing MOABC is recommended for applications such as evacuation planning, where a fast-running and efficient model is needed.


2014 ◽  
Vol 5 (3) ◽  
pp. 44-70 ◽  
Author(s):  
Mohamed-Mahmoud Ould Sidi ◽  
Bénédicte Quilot-Turion ◽  
Abdeslam Kadrani ◽  
Michel Génard ◽  
Françoise Lescourret

A major difficulty in the use of metaheuristics (i.e. evolutionary and particle swarm algorithms) to deal with multi-objective optimization problems is the choice of a convenient point at which to stop computation. Indeed, it is difficult to find the best compromise between the stopping criterion and the algorithm performance. This paper addresses this issue using the Non-dominated Sorting Genetic Algorithm (NSGA-II) and the Multi-Objective Particle Swarm Optimization with Crowding Distance (MOPSO-CD) for the model-based design of sustainable peach fruits. The optimization problem of interest contains three objectives: maximize fruit fresh mass, maximize fruit sugar content, and minimize the crack density on the fruit skin. This last objective targets a reduction in the use of fungicides and can thus enhance preservation of the environment and human health. Two versions of the NSGA-II and two of the MOPSO-CD were applied to tackle this difficult optimization problem: the original versions with a maximum number of generations used as stopping criterion and modified versions using the stopping criterion proposed by the authors of (Roudenko & Schoenauer, 2004). This second stopping criterion is based on the stabilization of the maximal crowding distance and aims to stop computation when many generations are performed without further improvement in the quality of the solutions. A benchmark consisting of four plant management scenarios has been used to compare the performances of the original versions (OV) and the modified versions (MV) of the NSGA-II and the MOPSO-CD. Twelve independent simulations were performed for each version and for each scenario, and a high number of generations were generated for the OV (e.g., 1500 for the NSGA-II and 200 for the MOPSO-CD). This paper compares the performances of the two versions of both algorithms using four standard metrics and statistical tests. For both algorithms, the MV obtained solutions similar in quality to those of the OV but after significantly fewer generations. The resulting reduction in computational time for the optimization step will provide opportunities for further studies on the sustainability of peach ideotypes.


2005 ◽  
Vol 13 (4) ◽  
pp. 501-525 ◽  
Author(s):  
Kalyanmoy Deb ◽  
Manikanth Mohan ◽  
Shikhar Mishra

Since the suggestion of a computing procedure of multiple Pareto-optimal solutions in multi-objective optimization problems in the early Nineties, researchers have been on the look out for a procedure which is computationally fast and simultaneously capable of finding a well-converged and well-distributed set of solutions. Most multi-objective evolutionary algorithms (MOEAs) developed in the past decade are either good for achieving a well-distributed solutions at the expense of a large computational effort or computationally fast at the expense of achieving a not-so-good distribution of solutions. For example, although the Strength Pareto Evolutionary Algorithm or SPEA (Zitzler and Thiele, 1999) produces a much better distribution compared to the elitist non-dominated sorting GA or NSGA-II (Deb et al., 2002a), the computational time needed to run SPEA is much greater. In this paper, we evaluate a recently-proposed steady-state MOEA (Deb et al., 2003) which was developed based on the ε-dominance concept introduced earlier (Laumanns et al., 2002) and using efficient parent and archive update strategies for achieving a well-distributed and well-converged set of solutions quickly. Based on an extensive comparative study with four other state-of-the-art MOEAs on a number of two, three, and four objective test problems, it is observed that the steady-state MOEA is a good compromise in terms of convergence near to the Pareto-optimal front, diversity of solutions, and computational time. Moreover, the ε-MOEA is a step closer towards making MOEAs pragmatic, particularly allowing a decision-maker to control the achievable accuracy in the obtained Pareto-optimal solutions.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2402
Author(s):  
Omid Kebriyaii ◽  
Ali Heidari ◽  
Mohammad Khalilzadeh ◽  
Jurgita Antucheviciene ◽  
Miroslavas Pavlovskis

Time, cost, and quality have been known as the project iron triangles and substantial factors in construction projects. Several studies have been conducted on time-cost-quality trade-off problems so far, however, none of them has considered the time value of money. In this paper, a multi-objective mathematical programming model is developed for time-cost-quality trade-off scheduling problems in construction projects considering the time value of money, since the time value of money, which is decreased during a long period of time, is a very important matter. Three objective functions of time, cost, and quality are taken into consideration. The cost objective function includes holding cost and negative cash flows. In this model, the net present value (NPV) of negative cash flow is calculated considering the costs of non-renewable (consumable) and renewable resources in each time period of executing activities, which can be mentioned as the other contribution of this study. Then, three metaheuristic algorithms including multi-objective grey wolf optimizer (MOGWO), non-dominated sorting genetic algorithm (NSGA-II), and multi-objective particle swarm optimization (MOPSO) are applied, and their performance is evaluated using six metrics introduced in the literature. Finally, a bridge construction project is considered as a real case study. The findings show that considering the time value of money can prevent cost overrun in projects. Additionally, the results indicate that the MOGWO algorithm outperforms the NSGA-II and MOPSO algorithms.


2012 ◽  
Vol 6-7 ◽  
pp. 445-451
Author(s):  
Chang Sheng Zhang ◽  
Ming Kang Ren ◽  
Bin Zhang

In this paper, an efficient multi-objective artificial bee colony optimization algorithm based on Pareto dominance called PC_MOABC is proposed to tackle the QoS based route optimization problem. The concepts of Pareto strength and crowding distance are introduced into this algorithm, and are combined together effectively to improve the algorithm’s efficiency and generate a set of evenly distributed solutions. The proposed algorithm was evaluated on a set of different scale test problems and compared with the recently proposed popular NSGA-II based multi-objective optimization algorithm. The experimental results reveal very encouraging results in terms of the solution quality and the processing time required.


VLSI Design ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
D. S. Harish Ram ◽  
M. C. Bhuvaneswari ◽  
Shanthi S. Prabhu

High-Level Synthesis deals with the translation of algorithmic descriptions into an RTL implementation. It is highly multi-objective in nature, necessitating trade-offs between mutually conflicting objectives such as area, power and delay. Thus design space exploration is integral to the High Level Synthesis process for early assessment of the impact of these trade-offs. We propose a methodology for multi-objective optimization of Area, Power and Delay during High Level Synthesis of data paths from Data Flow Graphs (DFGs). The technique performs scheduling and allocation of functional units and registers concurrently. A novel metric based technique is incorporated into the algorithm to estimate the likelihood of a schedule to yield low-power solutions. A true multi-objective evolutionary technique, “Nondominated Sorting Genetic Algorithm II” (NSGA II) is used in this work. Results on standard DFG benchmarks indicate that the NSGA II based approach is much faster than a weighted sum GA approach. It also yields superior solutions in terms of diversity and closeness to the true Pareto front. In addition a framework for applying another evolutionary technique: Weighted Sum Particle Swarm Optimization (WSPSO) is also reported. It is observed that compared to WSGA, WSPSO shows considerable improvement in execution time with comparable solution quality.


2020 ◽  
Vol 9 (4) ◽  
pp. 236
Author(s):  
Xiaolan Li ◽  
Bingbo Gao ◽  
Zhongke Bai ◽  
Yuchun Pan ◽  
Yunbing Gao

Complex geographical spatial sampling usually encounters various multi-objective optimization problems, for which effective multi-objective optimization algorithms are much needed to help advance the field. To improve the computational efficiency of the multi-objective optimization process, the archived multi-objective simulated annealing (AMOSA)-II method is proposed as an improved parallelized multi-objective optimization method for complex geographical spatial sampling. Based on the AMOSA method, multiple Markov chains are used to extend the traditional single Markov chain; multi-core parallelization technology is employed based on multi-Markov chains. The tabu-archive constraint is designed to avoid repeated searches for optimal solutions. Two cases were investigated: one with six typical traditional test problems, and the other for soil spatial sampling optimization applications. Six performance indices of the two cases were analyzed—computational time, convergence, purity, spacing, min-spacing and displacement. The results revealed that AMOSA-II performed better which was more effective in obtaining preferable optimal solutions compared with AMOSA and NSGA-II. AMOSA-II can be treated as a feasible means to apply in other complex geographical spatial sampling optimizations.


2018 ◽  
Vol 27 (4) ◽  
pp. 619-641 ◽  
Author(s):  
Amarjeet ◽  
Jitender Kumar Chhabra

Abstract Multi-objective software module clustering problem (M-SMCP) aims to automatically produce clustering solutions that optimize multiple conflicting clustering criteria simultaneously. Multi-objective evolutionary algorithms (MOEAs) have been a most appropriate alternate for solving M-SMCPs. Recently, it has been observed that the performance of MOEAs based on Pareto dominance selection technique degrades with multi-objective optimization problem having more than three objective functions. To alleviate this issue for M-SMCPs containing more than three objective functions, we propose a two-archive based artificial bee colony (TA-ABC) algorithm. For this contribution, a two-archive concept has been incorporated in the TA-ABC algorithm. Additionally, an improved indicator-based selection method is used instead of Pareto dominance selection technique. To validate the performance of TA-ABC, an empirical study is conducted with two well-known M-SMCPs, i.e. equal-size cluster approach and maximizing cluster approach, each containing five objective functions. The clustering result produced by TA-ABC is compared with existing genetic based two-archive algorithm (TAA) and non-dominated sorting genetic algorithm II (NSGA-II) over seven un-weighted and 10 weighted practical problems. The comparison results show that the proposed TA-ABC outperforms significantly TAA and NSGA-II in terms of modularization quality, coupling, cohesion, Pareto optimality, inverted generational distance, hypervolume, and spread performance metrics.


2020 ◽  
Vol 7 (6) ◽  
pp. 830-863
Author(s):  
R V Rao ◽  
R B Pawar

Abstract In this paper, an endeavor is made to enhance the convergence speed of the recently proposed Rao algorithms. The new upgraded versions of Rao algorithms named as “quasi-oppositional-based Rao algorithms” are proposed in this paper. The quasi-oppositional-based learning is incorporated in the basic Rao algorithms to diversify the searching process of the algorithms. The performance of the proposed algorithms is tested on 51 unconstrained benchmark functions. Also, three multi-objective optimization case studies of different heat sinks such as a single-layered microchannel heat sink (SL-MCHS), a double-layered microchannel heat sink (DL-MCHS), and a plate-fin heat sink (PFHS) are attempted to investigate the effectiveness of the proposed algorithms in solving real-world complex engineering optimization problems. The results obtained using the proposed algorithms are compared with the results obtained using the well-known advanced optimization algorithms such as genetic algorithm (GA), artificial bee colony (ABC), differential evolution (DE), particle swarm optimization (PSO), teaching-learning-based algorithm (TLBO), Jaya algorithm, multi-objective genetic algorithm (MOGA), non-dominated sorting genetic algorithm (NSGA-II), real-coded GA (RCGA), direction-based GA, self-adaptive multi-population (SAMP) Rao algorithms, and basic Rao algorithms. The proposed quasi-oppositional-based Rao algorithms are found superior or competitive to the other optimization algorithms considered.


Sign in / Sign up

Export Citation Format

Share Document