scholarly journals Predictive Path Following and Collision Avoidance of Autonomous Connected Vehicles

Algorithms ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 52 ◽  
Author(s):  
Mohamed Abdelaal ◽  
Steffen Schön

This paper considers nonlinear model predictive control for simultaneous path-following and collision avoidance of connected autonomous vehicles. For each agent, a nonlinear bicycle model is used to predict a sequence of the states and then optimize them with respect to a sequence of control inputs. The objective function of the optimal control problem is to follow the planned path which is represented by a Bézier curve. In order to achieve collision avoidance among the networked vehicles, a geometric shape must be selected to represent the vehicle geometry. In this paper, an elliptic disk is selected for that as it represents the geometry of the vehicle better than the traditional circular disk. A separation condition between each pair of elliptic disks is formulated as time-varying state constraints for the optimization problem. Driving corridors are assumed to be also Bézier curves, which could be obtained from digital maps, and are reformulated to suit the controller algorithm. The algorithm is validated using MATLAB simulation with the aid of ACADO toolkit.

2021 ◽  
Vol 13 (13) ◽  
pp. 2643
Author(s):  
Dário Pedro ◽  
João P. Matos-Carvalho ◽  
José M. Fonseca ◽  
André Mora

Unmanned Autonomous Vehicles (UAV), while not a recent invention, have recently acquired a prominent position in many industries, and they are increasingly used not only by avid customers, but also in high-demand technical use-cases, and will have a significant societal effect in the coming years. However, the use of UAVs is fraught with significant safety threats, such as collisions with dynamic obstacles (other UAVs, birds, or randomly thrown objects). This research focuses on a safety problem that is often overlooked due to a lack of technology and solutions to address it: collisions with non-stationary objects. A novel approach is described that employs deep learning techniques to solve the computationally intensive problem of real-time collision avoidance with dynamic objects using off-the-shelf commercial vision sensors. The suggested approach’s viability was corroborated by multiple experiments, firstly in simulation, and afterward in a concrete real-world case, that consists of dodging a thrown ball. A novel video dataset was created and made available for this purpose, and transfer learning was also tested, with positive results.


Electronics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1221
Author(s):  
Anum Mushtaq ◽  
Irfan ul Haq ◽  
Wajih un Nabi ◽  
Asifullah Khan ◽  
Omair Shafiq

Connected Autonomous Vehicles (AVs) promise innovative solutions for traffic flow management, especially for congestion mitigation. Vehicle-to-Vehicle (V2V) communication depends on wireless technology where vehicles can communicate with each other about obstacles and make cooperative strategies to avoid these obstacles. Vehicle-to-Infrastructure (V2I) also helps vehicles to make use of infrastructural components to navigate through different paths. This paper proposes an approach based on swarm intelligence for the formation and evolution of platoons to maintain traffic flow during congestion and collision avoidance practices using V2V and V2I communications. In this paper, we present a two level approach to improve traffic flow of AVs. At the first level, we reduce the congestion by forming platoons and study how platooning helps vehicles deal with congestion or obstacles in uncertain situations. We performed experiments based on different challenging scenarios during the platoon’s formation and evolution. At the second level, we incorporate a collision avoidance mechanism using V2V and V2I infrastructures. We used SUMO, Omnet++ with veins for simulations. The results show significant improvement in performance in maintaining traffic flow.


1998 ◽  
Vol 120 (1) ◽  
pp. 17-23 ◽  
Author(s):  
E. L. Mulkay ◽  
S. S. Rao

Numerical implementations of optimization algorithms often use parameters whose values are not strictly determined by the derivation of the algorithm, but must fall in some appropriate range of values. This work describes how fuzzy logic can be used to “control” such parameters to improve algorithm performance. This concept is shown with the use of sequential linear programming (SLP) due to its simplicity in implementation. The algorithm presented in this paper implements heuristics to improve the behavior of SLP based on current iterate values of design constraints and changes in search direction. Fuzzy logic is used to implement the heuristics in a form similar to what a human observer would do. An efficient algorithm, known as the infeasible primal-dual path-following interior-point method, is used for solving the sequence of LP problems. Four numerical examples are presented to show that the proposed SLP algorithm consistently performs better than the standard SLP algorithm.


Sign in / Sign up

Export Citation Format

Share Document