Structured road-oriented motion planning and tracking framework for active collision avoidance of autonomous vehicles

Author(s):  
ZiWei Zhang ◽  
Ling Zheng ◽  
YiNong Li ◽  
PengYun Zeng ◽  
YiXiao Liang
2021 ◽  
Vol 13 (13) ◽  
pp. 2643
Author(s):  
Dário Pedro ◽  
João P. Matos-Carvalho ◽  
José M. Fonseca ◽  
André Mora

Unmanned Autonomous Vehicles (UAV), while not a recent invention, have recently acquired a prominent position in many industries, and they are increasingly used not only by avid customers, but also in high-demand technical use-cases, and will have a significant societal effect in the coming years. However, the use of UAVs is fraught with significant safety threats, such as collisions with dynamic obstacles (other UAVs, birds, or randomly thrown objects). This research focuses on a safety problem that is often overlooked due to a lack of technology and solutions to address it: collisions with non-stationary objects. A novel approach is described that employs deep learning techniques to solve the computationally intensive problem of real-time collision avoidance with dynamic objects using off-the-shelf commercial vision sensors. The suggested approach’s viability was corroborated by multiple experiments, firstly in simulation, and afterward in a concrete real-world case, that consists of dodging a thrown ball. A novel video dataset was created and made available for this purpose, and transfer learning was also tested, with positive results.


Electronics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1221
Author(s):  
Anum Mushtaq ◽  
Irfan ul Haq ◽  
Wajih un Nabi ◽  
Asifullah Khan ◽  
Omair Shafiq

Connected Autonomous Vehicles (AVs) promise innovative solutions for traffic flow management, especially for congestion mitigation. Vehicle-to-Vehicle (V2V) communication depends on wireless technology where vehicles can communicate with each other about obstacles and make cooperative strategies to avoid these obstacles. Vehicle-to-Infrastructure (V2I) also helps vehicles to make use of infrastructural components to navigate through different paths. This paper proposes an approach based on swarm intelligence for the formation and evolution of platoons to maintain traffic flow during congestion and collision avoidance practices using V2V and V2I communications. In this paper, we present a two level approach to improve traffic flow of AVs. At the first level, we reduce the congestion by forming platoons and study how platooning helps vehicles deal with congestion or obstacles in uncertain situations. We performed experiments based on different challenging scenarios during the platoon’s formation and evolution. At the second level, we incorporate a collision avoidance mechanism using V2V and V2I infrastructures. We used SUMO, Omnet++ with veins for simulations. The results show significant improvement in performance in maintaining traffic flow.


Sign in / Sign up

Export Citation Format

Share Document