scholarly journals Sorting by Multi-Cut Rearrangements

Algorithms ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 169
Author(s):  
Laurent Bulteau ◽  
Guillaume Fertin ◽  
Géraldine Jean ◽  
Christian Komusiewicz

A multi-cut rearrangement of a string S is a string S′ obtained from S by an operation called k-cut rearrangement, that consists of (1) cutting S at a given number k of places in S, making S the concatenated string X1·X2·X3·…·Xk·Xk+1, where X1 and Xk+1 are possibly empty, and (2) rearranging the Xis so as to obtain S′=Xπ(1)·Xπ(2)·Xπ(3)·…·Xπ(k+1), π being a permutation on 1,2,…,k+1 satisfying π(1)=1 and π(k+1)=k+1. Given two strings S and T built on the same multiset of characters from an alphabet Σ, the Sorting by Multi-Cut Rearrangements (SMCR) problem asks whether a given number ℓ of k-cut rearrangements suffices to transform S into T. The SMCR problem generalizes several classical genomic rearrangements problems, such as Sorting by Transpositions and Sorting by Block Interchanges. It may also model chromoanagenesis, a recently discovered phenomenon consisting of massive simultaneous rearrangements. In this paper, we study the SMCR problem from an algorithmic complexity viewpoint. More precisely, we investigate its classical and parameterized complexity, as well as its approximability, in the general case or when S and T are permutations.

2011 ◽  
Vol 412 (22) ◽  
pp. 2387-2392 ◽  
Author(s):  
Yancai Zhao ◽  
Liying Kang ◽  
Moo Young Sohn

Cancers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 3171
Author(s):  
Sandrine M. Caputo ◽  
Dominique Telly ◽  
Adrien Briaux ◽  
Julie Sesen ◽  
Maurizio Ceppi ◽  
...  

Background: Large genomic rearrangements (LGR) in BRCA1 consisting of deletions/duplications of one or several exons have been found throughout the gene with a large proportion occurring in the 5′ region from the promoter to exon 2. The aim of this study was to better characterize those LGR in French high-risk breast/ovarian cancer families. Methods: DNA from 20 families with one apparent duplication and nine deletions was analyzed with a dedicated comparative genomic hybridization (CGH) array, high-resolution BRCA1 Genomic Morse Codes analysis and Sanger sequencing. Results: The apparent duplication was in fact a tandem triplication of exons 1 and 2 and part of intron 2 of BRCA1, fully characterized here for the first time. We calculated a causality score with the multifactorial model from data obtained from six families, classifying this variant as benign. Among the nine deletions detected in this region, eight have never been identified. The breakpoints fell in six recurrent regions and could confirm some specific conformation of the chromatin. Conclusions: Taken together, our results firmly establish that the BRCA1 5′ region is a frequent site of different LGRs and highlight the importance of the segmental duplication and Alu sequences, particularly the very high homologous region, in the mechanism of a recombination event. This also confirmed that those events are not systematically deleterious.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 778
Author(s):  
Yingli Niu ◽  
Xiangyu Bu ◽  
Xinghua Zhang

The application of single chain mean-field theory (SCMFT) on semiflexible chain brushes is reviewed. The worm-like chain (WLC) model is the best mode of semiflexible chain that can continuously recover to the rigid rod model and Gaussian chain (GC) model in rigid and flexible limits, respectively. Compared with the commonly used GC model, SCMFT is more applicable to the WLC model because the algorithmic complexity of the WLC model is much higher than that of the GC model in self-consistent field theory (SCFT). On the contrary, the algorithmic complexity of both models in SCMFT are comparable. In SCMFT, the ensemble average of quantities is obtained by sampling the conformations of a single chain or multi-chains in the external auxiliary field instead of solving the modified diffuse equation (MDE) in SCFT. The precision of this calculation is controlled by the number of bonds Nm used to discretize the chain contour length L and the number of conformations M used in the ensemble average. The latter factor can be well controlled by metropolis Monte Carlo simulation. This approach can be easily generalized to solve problems with complex boundary conditions or in high-dimensional systems, which were once nightmares when solving MDEs in SCFT. Moreover, the calculations in SCMFT mainly relate to the assemble averages of chain conformations, for which a portion of conformations can be performed parallel on different computing cores using a message-passing interface (MPI).


Author(s):  
Kyukwang Kim ◽  
Mooyoung Kim ◽  
Yubin Kim ◽  
Dongsung Lee ◽  
Inkyung Jung

2021 ◽  
Vol 867 ◽  
pp. 1-12
Author(s):  
Lawqueen Kanesh ◽  
Soumen Maity ◽  
Komal Muluk ◽  
Saket Saurabh

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Na Ma ◽  
Hui Xi ◽  
Jing Chen ◽  
Ying Peng ◽  
Zhengjun Jia ◽  
...  

Abstract Background Emerging studies suggest that low‐coverage massively parallel copy number variation sequencing (CNV-seq) more sensitive than chromosomal microarray analysis (CMA) for detecting low-level mosaicism. However, a retrospective back-to-back comparison evaluating accuracy, efficacy, and incremental yield of CNV-seq compared with CMA is warranted. Methods A total of 72 mosaicism cases identified by karyotyping or CMA were recruited to the study. There were 67 mosaic samples co-analysed by CMA and CNV-seq, comprising 40 with sex chromosome aneuploidy, 22 with autosomal aneuploidy and 5 with large cryptic genomic rearrangements. Results Of the 67 positive mosaic cases, the levels of mosaicism defined by CNV-seq ranged from 6 to 92% compared to the ratio from 3 to 90% by karyotyping and 20% to 72% by CMA. CNV-seq not only identified all 43 chromosomal aneuploidies or large cryptic genomic rearrangements detected by CMA, but also provided a 34.88% (15/43) increased yield compared with CMA. The improved yield of mosaicism detection by CNV-seq was largely due to the ability to detect low level mosaicism below 20%. Conclusion In the context of prenatal diagnosis, CNV-seq identified additional and clinically significant mosaicism with enhanced resolution and increased sensitivity. This study provides strong evidence for applying CNV-seq as an alternative to CMA for detection of aneuploidy and mosaic variants.


1994 ◽  
Vol 25 (3) ◽  
pp. 122-123 ◽  
Author(s):  
Michael T. Hallett ◽  
H. Todd Wareham

2020 ◽  
Vol 847 ◽  
pp. 27-38
Author(s):  
Christian Komusiewicz ◽  
Mateus de Oliveira Oliveira ◽  
Meirav Zehavi

Sign in / Sign up

Export Citation Format

Share Document