large genomic rearrangements
Recently Published Documents


TOTAL DOCUMENTS

68
(FIVE YEARS 19)

H-INDEX

16
(FIVE YEARS 1)

Author(s):  
Nadejda Valtcheva ◽  
Bich Doan Nguyen-Sträuli ◽  
Ulrich Wagner ◽  
Sandra N. Freiberger ◽  
Zsuzsanna Varga ◽  
...  

Cancers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 3171
Author(s):  
Sandrine M. Caputo ◽  
Dominique Telly ◽  
Adrien Briaux ◽  
Julie Sesen ◽  
Maurizio Ceppi ◽  
...  

Background: Large genomic rearrangements (LGR) in BRCA1 consisting of deletions/duplications of one or several exons have been found throughout the gene with a large proportion occurring in the 5′ region from the promoter to exon 2. The aim of this study was to better characterize those LGR in French high-risk breast/ovarian cancer families. Methods: DNA from 20 families with one apparent duplication and nine deletions was analyzed with a dedicated comparative genomic hybridization (CGH) array, high-resolution BRCA1 Genomic Morse Codes analysis and Sanger sequencing. Results: The apparent duplication was in fact a tandem triplication of exons 1 and 2 and part of intron 2 of BRCA1, fully characterized here for the first time. We calculated a causality score with the multifactorial model from data obtained from six families, classifying this variant as benign. Among the nine deletions detected in this region, eight have never been identified. The breakpoints fell in six recurrent regions and could confirm some specific conformation of the chromatin. Conclusions: Taken together, our results firmly establish that the BRCA1 5′ region is a frequent site of different LGRs and highlight the importance of the segmental duplication and Alu sequences, particularly the very high homologous region, in the mechanism of a recombination event. This also confirmed that those events are not systematically deleterious.


2021 ◽  
Author(s):  
Ibrahim Sahin ◽  
Hanife Saat

Abstract Heritable breast cancers account for 5 to 10% of all breast cancers, and monogenic, highly penetrant genes cause them. Around 90% of pathogenic variants in BRCA1 and BRCA2 are observed using gene sequencing, with another 10% identified through gene duplication/deletion analysis, which differs across various communities. In this study, we performed a next-generation sequencing panel and MLPA on 1484 patients to explain the importance of recurrent germline duplications/deletions of BRCA1-2 and their clinical results and determine how often BRCA gene LGRs were seen in people suspected of hereditary breast and ovarian cancer syndrome. The large genomic rearrangements (LGRs) frequency was approximately 1% (14/1484). All the 14 mutations were heterozygous and detected in patients with breast cancer. BRCA1 mutations were more predominant (n = 8, 57.1%) than BRCA2 mutations (6, 42.9%). The most common recurrent mutations were BRCA2 exon three and BRCA1 exon 24 (23) deletions. To the best of our knowledge, BRCA1 5'UTR-exon11 duplication has never been reported before. Testing with MLPA is essential to identify patients at high risk. Our data demonstrate that BRCA1-2 LGRs should be considered when ordering genetic testing for individuals with a personal or family history of cancer, particularly breast cancer. Further research could shed light on BRCA1-2 LGRs' unique carcinogenesis roles.


2021 ◽  
Vol 513 ◽  
pp. 17-24
Author(s):  
Elisa De Paolis ◽  
Maria De Bonis ◽  
Paola Concolino ◽  
Alessia Piermattei ◽  
Anna Fagotti ◽  
...  

2020 ◽  
Vol 21 (13) ◽  
pp. 4650
Author(s):  
Anikó Bozsik ◽  
Tímea Pócza ◽  
János Papp ◽  
Tibor Vaszkó ◽  
Henriett Butz ◽  
...  

Large genomic rearrangements (LGRs) affecting one or more exons of BRCA1 and BRCA2 constitute a significant part of the mutation spectrum of these genes. Since 2004, the National Institute of Oncology, Hungary, has been involved in screening for LGRs of breast or ovarian cancer families enrolled for genetic testing. LGRs were detected by multiplex ligation probe amplification method, or next-generation sequencing. Where it was possible, transcript-level characterization of LGRs was performed. Phenotype data were collected and analyzed too. Altogether 28 different types of LGRs in 51 probands were detected. Sixteen LGRs were novel. Forty-nine cases were deletions or duplications in BRCA1 and two affected BRCA2. Rearrangements accounted for 10% of the BRCA1 mutations. Three exon copy gains, two complex rearrangements, and 23 exon losses were characterized by exact breakpoint determinations. The inferred mechanisms for LGR formation were mainly end-joining repairs utilizing short direct homologies. Comparing phenotype features of the LGR-carriers to that of the non-LGR BRCA1 mutation carriers, revealed no significant differences. Our study is the largest comprehensive report of LGRs of BRCA1/2 in familial breast and ovarian cancer patients in the Middle and Eastern European region. Our data add novel insights to genetic interpretation associated to the LGRs.


2020 ◽  
Vol 19 ◽  
pp. S58
Author(s):  
N. Petrova ◽  
E. Kondratyeva ◽  
S. Krasovskiy ◽  
T. Adyan ◽  
A. Polyakov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document