scholarly journals Nonsingular Terminal Sliding Mode Based Finite-Time Dynamic Surface Control for a Quadrotor UAV

Algorithms ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 315
Author(s):  
Yuxiao Niu ◽  
Hanyu Ban ◽  
Haichao Zhang ◽  
Wenquan Gong ◽  
Fang Yu

In this work, a tracking control strategy is developed to achieve finite-time stability of quadrotor Unmanned Aerial Vehicles (UAVs) subject to external disturbances and parameter uncertainties. Firstly, a finite-time extended state observer (ESO) is proposed based on the nonsingular terminal sliding mode variable to estimate external disturbances to the position subsystem. Then, utilizing the information provided by the ESO and the nonsingular terminal sliding mode control (NTSMC) technique, a dynamic surface controller is proposed to achieve finite-time stability of the position subsystem. By conducting a similar step for the attitude subsystem, a finite-time ESO-based dynamic surface controller is proposed to carry out attitude tracking control of the quadrotor UAV. Finally, the performance of the control algorithm is demonstrated via a numerical simulation.

Author(s):  
Cheng Huang ◽  
Yan Wang ◽  
Xing-lin Chen

This paper studies the problem of attitude tracking control for spacecraft rendezvous and docking based on a physical ground simulation system. Two finite-time controllers based on quaternion are proposed by using a novel fast nonsingular terminal sliding mode surface associated with the adaptive control, the novel fast nonsingular terminal sliding mode surface not only contains the advantages of the fast nonsingular terminal sliding mode surface, but also can eliminate unwinding caused by the quaternion. The first controller, which is continuous and chattering-free, can compensate unknown constant external disturbances, while the second controller can both compensate parametric uncertainties and varying external disturbances with unknown bounds without chattering. Lyapunov theoretical analysis and simulation results show that the two controllers can make the closed-loop system errors converge to zero in finite time and guarantee the finite-time stability of the system.


Author(s):  
Hamid Razmjooei ◽  
Mohammad Hossein Shafiei

Abstract In this article, a new technique to design a robust controller to achieve finite-time partial stabilization for a class of nonlinear perturbed systems is proposed. Indeed the system is partially stabilized in a finite time, based on the novel concept of the nonsingular terminal sliding mode (TSM) control method. In the first step, the nonlinear dynamical system is divided into two subsystems based on their required stability properties of the system's states (where finite-time stability is only desired for the first subsystem). Then, using a partial diffeomorphism map to transform the first subsystem into the normal form, the control law is designed. Indeed, by introducing this new concept of the TSM method, robust finite-time stability of only a part of the system's state is guaranteed. Subsequently, simulation results demonstrate the effectiveness of the proposed method, and the results are compared with the existing methods.


2020 ◽  
Vol 29 (13) ◽  
pp. 2050212
Author(s):  
Zhi Gao ◽  
Zhihao Zhu ◽  
Yu Guo

For multi-spacecraft with actuator saturation, inertia uncertainties and external disturbances, a distributed finite-time coordinated attitude tracking control problem for the spacecraft with the communication topology containing fewer information paths is investigated. Aiming at reducing the communication path, a class of distributed finite-time state observers is designed. To speed up the convergence rate of the multiple spacecraft system, a fast nonsingular terminal sliding mode function is proposed. Moreover, an adaptive control term is proposed to suppress the impact of the external state-dependent disturbances and unknown time-varying inertia uncertainties. Further considering the actuator saturation owing to its physical limitations, a saturation function is designed. With the distributed finite-time observers, the fast nonsingular terminal sliding mode function, the adaptive update law and the saturation function, a distributed finite-time coordinated attitude tracking saturation controller is designed. Using the proposed controller, the follower can synchronize with the common leader with time-varying trajectory in finite time. Simulation results demonstrate the effectiveness of the designed controller.


Author(s):  
Qun Zong ◽  
Xiuyun Zhang ◽  
Shikai Shao ◽  
Bailing Tian ◽  
Wenjing Liu

In this paper, finite-time fault-tolerant attitude tracking control is investigated for rigid spacecraft system with external disturbances, inertia uncertainties and actuator faults. A novel finite-time disturbance observer combined with a nonsingular terminal sliding mode controller is developed. Using an equivalent output error injection approach, a finite-time disturbance observer with simple structure is firstly designed to estimate lumped uncertainty. Then, to remove the requirement of prior knowledge about lumped uncertainty and reduce chattering, an adaptive finite-time disturbance observer is further proposed, and the estimations converge to the neighborhood of the true values. Based on the designed observer, a unified finite-time attitude controller is obtained automatically. Finally, both additive and multiplicative faults are considered for simulations and the results illustrate the great fault-tolerant capability of the proposed scheme.


Author(s):  
Bing Huang ◽  
Ai-jun Li ◽  
Yong Guo ◽  
Chang-qing Wang ◽  
Jin-hua Guo

This paper investigates the finite-time attitude tracking control problem for spacecraft in the presence of external disturbances and actuator faults. Two anti-unwinding attitude tracking control schemes have been proposed based on the rotation matrix and sliding mode control technology. Utilizing a fast terminal sliding mode surface, the first controller can fulfill the finite-time attitude tracking control task with disturbance rejection ability. The second controller can improve the system reliability when the actuator fault occurs. Rigorous mathematical analysis and proof concludes that the proposed controllers can make a spacecraft track the desired attitude command in finite time. Numerical simulation results are presented to demonstrate the effectiveness of the proposed controllers.


Author(s):  
Bin Wang ◽  
Yangquan Chen ◽  
Ying Yang

Abstract This paper studies the chattering-free finite-time control for a class of fractional-order nonlinear systems. First, a class of fractional-order nonlinear systems with external disturbances is presented. Second, a new finite-time terminal sliding mode control method is proposed for the stability control of a class of fractional-order nonlinear systems by combining the finite-time stability theory and sliding mode control scheme. Third, by designing a controller with a differential form and introducing the arc tangent function, the chattering phenomenon is well suppressed. Additionally, a controller is developed to resist external disturbances. Finally, numerical simulations are implemented to demonstrate the feasibility and validity of the proposed method.


2016 ◽  
Vol 40 (3) ◽  
pp. 853-860 ◽  
Author(s):  
Xuan-Toa Tran ◽  
Hee-Jun Kang

This paper introduces an adaptive control method for finite-time modified function projective lag synchronization of uncertain hyperchaotic systems. Based upon novel nonsingular terminal sliding mode surfaces and the adaptive super-twisting algorithm, a controller is proposed to provide robustness, high precision and fast and finite-time modified function projective lag synchronization without the knowledge of the upper bound of uncertainties and unknown external disturbances. In addition, chattering is significantly attenuated due to the inherited continuity of the proposed controller. The global stability and finite-time convergence are rigorously proven. Numerical simulation is presented to demonstrate the effectiveness and feasibility of the proposed strategy and to verify the theoretical results.


Author(s):  
Zeng Wang ◽  
Yuxin Su ◽  
Liyin Zhang

This paper addresses the finite time attitude tracking for rigid spacecraft with inertia uncertainties and external disturbances. First, a new nonsingular terminal sliding mode (NTSM) surface is proposed for singularity elimination. Second, a robust controller based on NTSM is designed to solve the attitude tracking problem. It is proved that the new NTSM can converge to zero within finite time, and the attitude tracking errors converge to an arbitrary small bound centered on equilibrium point within finite time and then go to equilibrium point asymptotically. The appealing features of the proposed control are fast convergence, high precision, strong robustness, and easy implementation. Simulations verify the effectiveness of the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document