Partial Finite-Time Stabilization of Perturbed Nonlinear Systems Based on the Novel Concept of Nonsingular Terminal Sliding Mode Method

Author(s):  
Hamid Razmjooei ◽  
Mohammad Hossein Shafiei

Abstract In this article, a new technique to design a robust controller to achieve finite-time partial stabilization for a class of nonlinear perturbed systems is proposed. Indeed the system is partially stabilized in a finite time, based on the novel concept of the nonsingular terminal sliding mode (TSM) control method. In the first step, the nonlinear dynamical system is divided into two subsystems based on their required stability properties of the system's states (where finite-time stability is only desired for the first subsystem). Then, using a partial diffeomorphism map to transform the first subsystem into the normal form, the control law is designed. Indeed, by introducing this new concept of the TSM method, robust finite-time stability of only a part of the system's state is guaranteed. Subsequently, simulation results demonstrate the effectiveness of the proposed method, and the results are compared with the existing methods.

Algorithms ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 315
Author(s):  
Yuxiao Niu ◽  
Hanyu Ban ◽  
Haichao Zhang ◽  
Wenquan Gong ◽  
Fang Yu

In this work, a tracking control strategy is developed to achieve finite-time stability of quadrotor Unmanned Aerial Vehicles (UAVs) subject to external disturbances and parameter uncertainties. Firstly, a finite-time extended state observer (ESO) is proposed based on the nonsingular terminal sliding mode variable to estimate external disturbances to the position subsystem. Then, utilizing the information provided by the ESO and the nonsingular terminal sliding mode control (NTSMC) technique, a dynamic surface controller is proposed to achieve finite-time stability of the position subsystem. By conducting a similar step for the attitude subsystem, a finite-time ESO-based dynamic surface controller is proposed to carry out attitude tracking control of the quadrotor UAV. Finally, the performance of the control algorithm is demonstrated via a numerical simulation.


Author(s):  
Cheng Huang ◽  
Yan Wang ◽  
Xing-lin Chen

This paper studies the problem of attitude tracking control for spacecraft rendezvous and docking based on a physical ground simulation system. Two finite-time controllers based on quaternion are proposed by using a novel fast nonsingular terminal sliding mode surface associated with the adaptive control, the novel fast nonsingular terminal sliding mode surface not only contains the advantages of the fast nonsingular terminal sliding mode surface, but also can eliminate unwinding caused by the quaternion. The first controller, which is continuous and chattering-free, can compensate unknown constant external disturbances, while the second controller can both compensate parametric uncertainties and varying external disturbances with unknown bounds without chattering. Lyapunov theoretical analysis and simulation results show that the two controllers can make the closed-loop system errors converge to zero in finite time and guarantee the finite-time stability of the system.


2016 ◽  
Vol 40 (3) ◽  
pp. 853-860 ◽  
Author(s):  
Xuan-Toa Tran ◽  
Hee-Jun Kang

This paper introduces an adaptive control method for finite-time modified function projective lag synchronization of uncertain hyperchaotic systems. Based upon novel nonsingular terminal sliding mode surfaces and the adaptive super-twisting algorithm, a controller is proposed to provide robustness, high precision and fast and finite-time modified function projective lag synchronization without the knowledge of the upper bound of uncertainties and unknown external disturbances. In addition, chattering is significantly attenuated due to the inherited continuity of the proposed controller. The global stability and finite-time convergence are rigorously proven. Numerical simulation is presented to demonstrate the effectiveness and feasibility of the proposed strategy and to verify the theoretical results.


Author(s):  
Bijan Hashtarkhani ◽  
Mohammad Javad Khosrowjerdi

This article proposes an adaptive neural output tracking control scheme for a class of nonlinear fractional order (FO) systems in the presence of unknown actuator faults. By means of backstepping terminal sliding mode (SM) control technique, an adaptive fractional state-feedback control law is extracted to achieve finite time stability along with output tracking for an uncertain faulty FO system. The unknown nonlinear terms are approximated by radial-basis function neural network (RBFNN) with unknown approximation error upper bound. Using convergence in finite time and fractional Lyapunov stability theorems, the finite time stability and tracking achievement are proved. Finally, the proposed fault tolerant control (FTC) approach is validated with numerical simulations on two fractional models including fractional Genesio–Tesi and fractional Duffing's oscillator systems.


2019 ◽  
Vol 26 (11-12) ◽  
pp. 1001-1011 ◽  
Author(s):  
Hamid Razmjooei ◽  
Mohammad Hossein Shafiei

This paper presents a novel technique to design a robust finite-time partial stabilizer, based on the non-singular terminal sliding mode method and a disturbance observer for the missile guidance problem. In the proposed method, the finite-time stability is desired for only a part of the state variables in the guidance system. Accordingly, the guidance system is divided into two subsystems where the finite-time stability is desired only for the first subsystem. Then, a partial diffeomorphism transformation is used to convert the first subsystem into the normal form. Finally, the components of the input vector appearing in the transformed form of the first subsystem are designed to achieve finite-time stability based on a partial disturbance observer. In the proposed finite-time disturbance observer, the disturbances are estimated in a finite time without any knowledge about their upper bounds. Simulation results demonstrate the effectiveness of the designed guidance law to intercept maneuvering and non-maneuvering targets compared to the existing methods.


Author(s):  
Jianhua Sun ◽  
Hai Gu ◽  
Jie Zhang ◽  
Hashem Imani Marrani

Active and robust control of surge instability is a special necessity for optimal and safe operation of centrifugal compressors, and for the purpose, this article presents a new hybrid scheme based on fuzzy and terminal sliding mode methods. The Greitzer model is used to design a novel controller when the disturbance instability in the flow and pressure alike the uncertainity in the compressor characteristic curve and throttle valve are embedded in it. The fuzzy approximator is used to estimate the effects of parametric uncertainty and the nonlinear terms, and the robustness of the proposed method is guaranteed using the terminal sliding mode control method. The Lyapunov criterion is utilized to verify the finite-time stability of the closed-loop system. The performance of the presented method is compared with other methods in the literature through simulations in MATLAB software. The results suggest that our designed controller outperforms the existing ones in terms of surge prevention and robustness against unmatched uncertainties and disturbances.


2020 ◽  
pp. 107754632098244
Author(s):  
Hamid Razmjooei ◽  
Mohammad Hossein Shafiei ◽  
Elahe Abdi ◽  
Chenguang Yang

In this article, an innovative technique to design a robust finite-time state feedback controller for a class of uncertain robotic manipulators is proposed. This controller aims to converge the state variables of the system to a small bound around the origin in a finite time. The main innovation of this article is transforming the model of an uncertain robotic manipulator into a new time-varying form to achieve the finite-time boundedness criteria using asymptotic stability methods. First, based on prior knowledge about the upper bound of uncertainties and disturbances, an innovative finite-time sliding mode controller is designed. Then, the innovative finite-time sliding mode controller is developed for finite-time tracking of time-varying reference signals by the outputs of the system. Finally, the efficiency of the proposed control laws is illustrated for serial robotic manipulators with any number of links through numerical simulations, and it is compared with the nonsingular terminal sliding mode control method as one of the most powerful finite-time techniques.


2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Wei Gao ◽  
Xiuping Chen ◽  
Haibo Du ◽  
Song Bai

For the position tracking control problem of permanent magnet linear motor, an improved fast continuous-time nonsingular terminal sliding mode control algorithm based on terminal sliding mode control method is proposed. Specifically, first, for the second-order model of position error dynamic system, a new continuous-time fast terminal sliding surface is introduced and an improved continuous-time fast terminal sliding mode control law is proposed. Then rigorous theoretical analysis is provided to demonstrate the finite-time stability of the closed-loop system by using the Lyapunov function. Finally, numerical simulations are given to verify the effectiveness and advantages of the proposed fast nonsingular terminal sliding mode control method.


Author(s):  
Chao Han ◽  
Zhen Liu ◽  
Jianqiang Yi

In this paper, a novel adaptive finite-time control of air-breathing hypersonic vehicles is proposed. Based on the immersion and invariance theory, an adaptive finite-time control method for general second-order systems is first derived, using nonsingular terminal sliding mode scheme. Then the method is applied to the control system design of a flexible air-breathing vehicle model, whose dynamics can be decoupled into first-order and second-order subsystems by time-scale separation principle. The main features of this hypersonic vehicle control system lie in the design flexibility of the parameter adaptive laws and the rapid convergence to the equilibrium point. Finally, simulations are conducted, which demonstrate that the control system has the features of fast and accurate tracking to command trajectories and strong robustness to parametric and non-parametric uncertainties.


Sign in / Sign up

Export Citation Format

Share Document