scholarly journals 3-Bit Digital-to-Analog Converter with Mechanical Amplifier for Binary Encoded Large Displacements

Actuators ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 182
Author(s):  
Lisa Schmitt ◽  
Philip Schmitt ◽  
Martin Hoffmann

We present the design, fabrication, and characterization of a MEMS-based 3-bit Digital-to-Analog Converter (DAC) that allows the generation of large displacements. The DAC consists of electrostatic bending-plate actuators that are connected to a mechanical amplifier (mechAMP), enabling the amplification of the DAC output displacement. Based on a parallel binary-encoded voltage signal, the output displacement of the system can be controlled in an arbitrary order. Considering the system design, we present a simplified analytic model, which was confirmed by FE simulation results. The fabricated systems showed a total stroke of approx. 149.5 ± 0.3 µm and a linear stepwise displacement of 3 bit correlated to 23 ≙ eight defined positions at a control voltage of 60 V. The minimum switching time between two input binary states is 0.1 ms. We present the experimental characterization of the system and the DAC and derive the influence of the mechAMP on the functionality of the DAC. Furthermore, the resonant behavior and the switching speed of the system are analyzed. By changing the electrode activation sequence, 27 defined positions are achieved upgrading the 3-bit systems into a 3-tri-state (33) system.

2020 ◽  
pp. 15-23
Author(s):  
V. M. Grechishnikov ◽  
E. G. Komarov

The design and operation principle of a multi-sensor Converter of binary mechanical signals into electrical signals based on a partitioned fiber-optic digital-to-analog Converter with a parallel structure is considered. The digital-to-analog Converter is made from a set of simple and technological (three to five digit) fiber-optic digital-to-analog sections. The advantages of the optical scheme of the proposed. Converter in terms of metrological and energy characteristics in comparison with single multi-bit converters are justified. It is shown that by increasing the number of digital-analog sections, it is possible to repeatedly increase the information capacity of a multi-sensor Converter without tightening the requirements for its manufacturing technology and element base. A mathematical model of the proposed Converter is developed that reflects the features of its operation in the mode of sequential time conversion of the input code vectors of individual fiber-optic sections into electrical analogues and the formation of the resulting output code vector.


2021 ◽  
Vol 4 (3) ◽  
pp. 47
Author(s):  
Sergey M. Afonin

This work determines the coded control of a sectional electroelastic engine at the elastic–inertial load for nanomechatronics systems. The expressions of the mechanical and adjustment characteristics of a sectional electroelastic engine are obtained using the equations of the electroelasticity and the mechanical load. A sectional electroelastic engine is applied for coded control of nanodisplacement as a digital-to-analog converter. The transfer function and the transient characteristics of a sectional electroelastic engine at elastic–inertial load are received for nanomechatronics systems.


Sign in / Sign up

Export Citation Format

Share Document