scholarly journals Buttons on Demand Sliding Mechanism Driven by Smart Materials and Mechanical Design

Actuators ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 251
Author(s):  
Christianto Renata ◽  
Manivannan Sivaperuman Kalairaj ◽  
Hong Mei Chen ◽  
Gih Keong Lau ◽  
Wei Min Huang

In this paper, we describe a novel human interaction platform in a car, called buttons on demand, that will serve as buttons inside the interior of a car, which can be called upon and activated when required but remain concealed and inactive when not required. The mechanism to obtain such interaction is driven by a combination of smart materials and mechanical design. The elaboration of smart materials and mechanical design employed to achieve this mechanism is discussed. A demonstration of how the buttons on demand mechanism described in this paper can potentially substitute or minimize the use of bulkier physical buttons in cars and provide the user with haptic and tactile feedback with low power consumption and fast response time is also presented.

2020 ◽  
Author(s):  
SMITA GAJANAN NAIK ◽  
Mohammad Hussain Kasim Rabinal

Electrical memory switching effect has received a great interest to develop emerging memory technology such as memristors. The high density, fast response, multi-bit storage and low power consumption are their...


2020 ◽  
Vol 236 ◽  
pp. 116064 ◽  
Author(s):  
Fajr I.M. Ali ◽  
Saleh T. Mahmoud ◽  
Falah Awwad ◽  
Yaser E. Greish ◽  
Ayah F.S. Abu-Hani

Polymers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1898 ◽  
Author(s):  
Yue Cao ◽  
Daming Zhang ◽  
Yue Yang ◽  
Baizhu Lin ◽  
Jiawen Lv ◽  
...  

This article demonstrates a dispersed-monolayer graphene-doped polymer/silica hybrid Mach–Zehnder interferometer (MZI) thermal optical switch with low-power consumption and fast response. The polymer/silica hybrid MZI structure reduces the power consumption of the device as a result of the large thermal optical coefficient of the polymer material. To further decrease the response time of the thermal optical switch device, a polymethyl methacrylate, doped with monolayer graphene as a cladding material, has been synthesized. Our study theoretically analyzed the thermal conductivity of composites using the Lewis–Nielsen model. The predicted thermal conductivity of the composites increased by 133.16% at a graphene volume fraction of 0.263 vol %, due to the large thermal conductivity of graphene. Measurements taken of the fabricated thermal optical switch exhibited a power consumption of 7.68 mW, a rise time of 40 μs, and a fall time of 80 μs at a wavelength of 1550 nm.


2021 ◽  
Vol 105 ◽  
pp. 3-7
Author(s):  
De Sheng Liu ◽  
Jiang Wu ◽  
Zhi Ming Wang

Ethanol sensor has been widely used in our daily life and industrial production, such as drunk driving test, food fermentation monitoring, and industrial gas leakage monitoring. With the advent of the Internet of Things (IoT) era, ethanol sensors will develop towards miniaturization and low-power consumption in the near future. However, traditional ethanol sensors with large volumes and high-power consumption are difficult to meet these requirements. Therefore, it is urgent to study ethanol gas sensors based on new materials and new structures. Here, we demonstrated a flexible ethanol sensor based on an ion gel-coated graphene field-effect transistor (IGFET). The device has a small graphene channel size with a width of 300 μm and a length of 200 μm. The device showed a low operating voltage of less than |±1| V. When the device was put into an ethanol gas condition, the Dirac point voltage of the IGFET showed a negative shift, which means an n-type doping effect to the graphene channel. Furthermore, the sensor showed a normalized current change of-11% against an ethanol gas concentration of 78.51 g/L at a constant drain-source voltage of 0.1 V. In addition, the device exhibited a fast response time of ~10 s and a recovery time of ~18 s. Moreover, the detectable range of the device was found to as wide as 19.76-785.1 g/L. Based on the above results, the flexible IGFET-based ethanol sensor with small size and low-power consumption has great potential to be used in the industrial production of the IoT era.


Micromachines ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 578
Author(s):  
Wenjun Zeng ◽  
Zichuan Yi ◽  
Xichen Zhou ◽  
Yiming Zhao ◽  
Haoqiang Feng ◽  
...  

Three-color electrophoretic displays (EPDs) have the advantages of multi-color display and low power consumption. However, their red particles have the disadvantage of long response time. In this paper, a driving waveform, which is based on electrophoresis theory and reference gray scale optimization, was proposed to shorten the response time of red particles in three-color EPDs. The driving waveform was composed of erasing stage, reference gray scale forming stage, red driving stage, and white or black driving stage. Firstly, the characteristics of particle motion were analyzed by electrophoresis theory and Stokes law. Secondly, the reference gray scale of the driving waveform was optimized to shorten the distance between red particles and a common electrode plate. Finally, an experimental platform was developed to test the performance of the driving waveform. Experimental results showed that the proposed driving waveform can shorten the response time of red particles by 65.57% and reduce the number of flickers by 66.67% compared with the traditional driving waveform.


Sign in / Sign up

Export Citation Format

Share Document