driving waveform
Recently Published Documents


TOTAL DOCUMENTS

84
(FIVE YEARS 29)

H-INDEX

10
(FIVE YEARS 2)

Micromachines ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 59
Author(s):  
Hu Zhang ◽  
Zichuan Yi ◽  
Liming Liu ◽  
Feng Chi ◽  
Yunfeng Hu ◽  
...  

Three-color electrophoretic displays (EPDs) have the characteristics of colorful display, reflection display, low power consumption, and flexible display. However, due to the addition of red particles, response time of three-color EPDs is increased. In this paper, we proposed a new driving waveform based on high-frequency voltage optimization and electrophoresis theory, which was used to shorten the response time. The proposed driving waveform was composed of an activation stage, a new red driving stage, and a black or white driving stage. The response time of particles was effectively reduced by removing an erasing stage. In the design process, the velocity of particles in non-polar solvents was analyzed by Newton’s second law and Stokes law. Next, an optimal duration and an optimal frequency of the activation stage were obtained to reduce ghost images and improve particle activity. Then, an optimal voltage which can effectively drive red particles was tested to reduce the response time of red particles. Experimental results showed that compared with a traditional driving waveform, the proposed driving waveform had a better performance. Response times of black particles, white particles and red particles were shortened by 40%, 47.8% and 44.9%, respectively.


Membranes ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 920
Author(s):  
Wenjun Zeng ◽  
Zichuan Yi ◽  
Yiming Zhao ◽  
Li Wang ◽  
Jitao Zhang ◽  
...  

Electrowetting displays (EWDs) are one of the most potential electronic papers. However, they have the problem of oil film splitting, which could lead to a low aperture ratio of EWDs. In this paper, a driving waveform was proposed to reduce oil film splitting. The driving waveform was composed of a rising stage and a driving stage. First, the rupture voltage of oil film was analyzed by testing the voltage characteristic curve of EWDs. Then, a quadratic function waveform with an initial voltage was applied at the rising stage to suppress oil film splitting. Finally, a square wave was applied at the driving stage to maintain the aperture ratio of EWDs. The experimental results show that the luminance was increased by 8.78% and the aperture ratio was increased by 4.47% compared with an exponential function driving waveform.


Micromachines ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1306
Author(s):  
Hu Zhang ◽  
Zichuan Yi ◽  
Simin Ma ◽  
Shaoning Deng ◽  
Weibiao Zhou ◽  
...  

The shortage of color in traditional electrophoretic displays (EPDs) can be compensated by three-color EPDs. However, the response time of black particles and white particles is increased. A new driving waveform based on the principle of three-color EPDs and electrophoresis theory was proposed to shorten the response time of black particles and white particles. The proposed driving waveform consisted of an erasing stage, an activation stage, a red driving stage, and a white or a black driving stage. The activation stage was mainly optimized in this paper. Firstly, the motion characteristics of the particles were analyzed using Stokes law and electrophoresis theory. Secondly, an optimal high frequency oscillation voltage was tested in order to improve the activity of the particles. Then, the influence of oscillation period and oscillation times on the activation stage were analyzed for optimizing the reference grayscale. According to the luminance of pixels, an oscillation period of 30 ms and an oscillation time of 30 were determined. The experimental results showed that the response time of black particles was shortened by 45%, and the response time of white particles was shortened by 40% compared with a traditional driving waveform.


2021 ◽  
Vol 9 ◽  
Author(s):  
Lixia Tian ◽  
Hao Li

As a new reflective display technology, electrowetting displays (EWDs) have many important characteristics, such as high reflectivity, low power consumption, and paper-like display. However, the contact angle hysteresis, which is the inconsistency between the advancing contact angle and the receding contact angle of oil droplet movement, seriously affects the response speed of EWDs in the driving process. According to the hysteresis phenomenon of contact angle in an oil switch motion with the action of interface tension, the brightness curve of EWDs in the process of pixel switching by different driving voltages was tested in this paper, and driving voltage was changed from 30 to 100 V at the same time. Then, in order to reduce the influence of the hysteresis effect, an equivalent driving waveform design method with overdriving voltage was proposed, and the overvoltage was set to 100 V according to the hysteresis effect and driving characteristic of EWDs. Experimental results showed that the response rising time of EWDs was reduced to 21 ms by using the proposed driving waveform, and the response performance of EWDs can be effectively improved.


2021 ◽  
Vol 9 ◽  
Author(s):  
Li Wang ◽  
Pengchang Ma ◽  
Jitao Zhang ◽  
Qiming Wan

An electrophoretic display (EPD) is a kind of paper display technology, which has the advantages of ultra-low power consumption and readability under strong light. However, in an EPD-driving process, four stages are needed to finish the driving of a pixel erase original images, reset to black state, clear-to-white state, and write a new image. A white reference gray scale can be obtained before writing a new image, and this driving process may take too long for the comfort of reading. In this article, an EPD-driving waveform, which takes the black state as the reference gray, is proposed to reduce the driving time. In addition, the rules of direct current (DC) balance are also followed to prevent the charge from getting trapped in the driving backplane. The driving process is fused and there are two stages in the driving waveform: reset to black state and write the next image. First, the EPD is written to a stable black state according to the original gray scale driving waveform and the black state is used as the reference gray for the next image. Second, the new image is written by the second stage of the new driving waveform. The experimental results show that the proposed driving waveform has a better performance. Compared with the traditional driving waveform which has four stages, the driving time of the new driving waveform is reduced by nearly 50%.


2021 ◽  
Vol 11 (15) ◽  
pp. 6706
Author(s):  
Liying Zhen ◽  
Yan Zhao ◽  
Pin Zhang ◽  
Congwei Liao ◽  
Xiaohui Gao ◽  
...  

This paper presents an adaptive camouflage system in visible band, featuring a dominant color feature-matching algorithm and pulse width modulation (PWM)-based display driving circuit. The control system consists of three parts, namely, the background sensing part, the central processing part, and the physical driving waveform generation part. Images of the local environment are sampled by the background sensing part, and then the dominant color feature matching algorithm is conducted to select a proper camouflage image that matches the local environment. Consequently, the cholesteric liquid crystals (CLCs) display using amplitude adjustable AC voltage, which is modulated by the physical driving waveform generation unit. The experimental results show that the matching degree of the proposed algorithm was 2.47 times that of the conventional hue (H), saturation (S), and value (V) histogram camouflage evaluation method, while the output peak wavelength of the reflective band can be adjusted from 604 to 544 nm according to the ambient color profile.


2021 ◽  
Vol 9 ◽  
Author(s):  
Zichuan Yi ◽  
Hu Zhang ◽  
Wenjun Zeng ◽  
Haoqiang Feng ◽  
Zhengxing Long ◽  
...  

Electrowetting display (EWD) is the most potential technology among new electronic paper technologies. It not only has the advantages of electrophoretic display (EPD) technology but also can realize color video playback. Therefore, this technology has been widely studied in recent years. Driving waveform is a voltage sequence which can drive pixels to display gray scales in EWDs. As one of the key technologies, it directly affects the display effect of pixels. In this paper, we give a review of the display principle of EWDs and the research status of driving waveforms. At the same time, the contact angle hysteresis, charge trapping, and oil splitting are also reviewed, which can provide a reference value for designing driving waveforms.


2021 ◽  
Vol 9 ◽  
Author(s):  
Shufa Lai ◽  
Qinghua Zhong ◽  
Hailing Sun

Electrowetting display (EWD) is a new reflective display device with low power consumption and fast response speed. However, the maximum aperture ratio of EWDs is confined by oil-splitting. In order to suppress oil-splitting, a two-dimensional EWD model with a switch-on and a switch-off process was established in this paper. The process of oil-splitting was obtained by applying different voltage values in this model. Then, the relationship between the oil-splitting process and the waveforms with different slopes was analyzed. Based on this relationship, a driving waveform with a narrow falling ramp, low-voltage maintenance, and a rising ramp was proposed on the basis of square waveform. The proposed narrow falling ramp drove the oil to rupture on one side. The low-voltage maintenance stage drove the oil to shrink with a whole block. The proposed rising ramp was pushed the oil into a corner quickly. The experimental results showed that the oil splitting can be suppressed effectively by applying the proposed driving waveform. The aperture ratio of the proposed driving waveform was 2.9% higher than that of the square waveform with the same voltage.


2021 ◽  
Vol 9 ◽  
Author(s):  
Lixia Tian ◽  
Pengfei Bai

As a reflective display technology, electrowetting displays (EWDs) have the advantages of paper-like display, low power consumption, fast response, and full color, but the aperture ratio of EWDs is seriously affected by oil dispersion and charge trapping. In order to improve the aperture ratio and optimize the display performance of EWDs, a combined pulse driving waveform with rising gradient design was proposed. First, an initial driving voltage was established by the threshold voltage of oil film rupture (Vth). And then, a rising gradient was designed to prevent oil from dispersing. At last, the oil splitting and movement were controlled to achieve the target aperture combined with the pulse waveform. Experimental results showed that the oil dispersion of EWDs can be effectively improved by using the proposed driving waveform, the aperture ratio of EWDs was increased by 3.16%, and the stability was increased by 71.43%.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yih-Lin Cheng ◽  
Tzu-Wei Tseng

Purpose Material-jetting (MJ) three-dimensional (3D) printing processes are competitive due to their printing resolution and printing speed. Driving waveform design of piezoelectric printhead in MJ would affect droplet formation and performance, but there are very limited studies on it besides patents and know-hows by commercial manufacturers. Therefore, in this research, the waveform design process to efficiently attain suitable parameters for a multi-nozzle piezoelectric printhead was studied. Therefore, this research aims to study the waveform design process to efficiently attain suitable parameters for a multi-nozzle piezoelectric printhead. Design/methodology/approach Ricoh’s Gen4L printhead was adopted. A high-speed camera captured pictures of jetted droplets and droplet velocity was calculated. The waveforms included single-, double- and triple-pulse trapezoidal patterns. The effects of parameters were investigated and the suitable ones were determined based on the avoidance of satellite drops and preference of higher droplet velocity. Findings In a single-pulse waveform, an increase of fill time (Tf) decreased the droplet velocity. The maximum velocity happened at the same pulse width, the sum of fill time and hold time (Tf + Th). In double- and triple-pulse, a voltage difference (Vd) above zero in the holding stage was adopted except the last pulse to avoid satellite drops. Suitable parameters for the selected resin were obtained and the time-saving design process was established. Research limitations/implications Based on the effects of parameters and observed data trends, suggested procedures to determine suitable parameters were proposed with fewer experiments. Practical implications This study has verified the feasibility of suggested design procedures on another resin. The required number of trials was reduced significantly. Originality/value This research investigated the process of driving waveform design for the multi-nozzle piezoelectric printhead. The suggested procedures of finding suitable waveform parameters can reduce experimental trials and will be applicable to other MJ 3D printers when new materials are introduced.


Sign in / Sign up

Export Citation Format

Share Document