scholarly journals Microfluidic Jetting Deformation and Pinching-off Mechanism in Capillary Tubes by Using Traveling Surface Acoustic Waves

Actuators ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 5 ◽  
Author(s):  
Yulin Lei ◽  
Hong Hu ◽  
Jian Chen ◽  
Peng Zhang

To date, there has been little research attention paid to jetting deformation and pinching-off of microfluidic flows induced by the surface acoustic wave (SAW) mechanism. Further, such studies were almost limited to one sessile drop actuation without any confinement mechanisms. Such a scenario is likely attributable to the mechanism’s relatively poor controllability, the difficulty of maintaining the fluid loading position and issues related to stability and repeatability. In this paper, a novel SAW-microfluidic jetting system with a vertical capillary tube was designed, accompanied by a large number of experiments investigating the single droplet jetting mechanism with different device dimensions, resonance frequencies and radio frequency (RF) power capabilities. The study began with the whole jetting deformation and droplet pinching off through the use of a microscope with a high-speed camera, after which the results were discussed to explain the droplet jetting mechanism in a vertical capillary tube. After that, the study continued with experimental and theoretical examinations for high-quality single droplet jetting conditions. Jetting characterization parameters, including threshold RF power, resonance frequency, liquid volume, pinching off droplet dimensions, were thoroughly analyzed. Lastly, the Weber number range, a significant parameter in SAW-microfluidic jetting, was verified, and the pinching off microdroplet dimension was analyzed and compared via experiments. The significance of this study lies in the realization of microfluidic drop-on-demand based on SAW technology.

Acoustics ◽  
2020 ◽  
Vol 2 (2) ◽  
pp. 366-381
Author(s):  
Hani Alhazmi ◽  
Rasim Guldiken

The propagation of surface acoustic waves over a solid plate is highly influenced by the presence of liquid media on the surface. At the solid–liquid interface, a leaky Rayleigh wave radiates energy into the liquid, causing a signification attenuation of the surface acoustic wave amplitude. In this study, we take advantage of this spurious wave mode to predict the characteristics of the media, including the volume or height. In this study, the surface acoustic waves were generated on a thick 1018 steel surface via a 5 MHz transducer coupled through an angle beam wedge. A 3D-printed container was inserted on the propagation path. The pulse-echo time-domain responses of the signal were recorded at five different volumes (0, 400, 600, 1000, and 1800 µL). With the aid of parametric CAD analysis, both the position and distance of the entire traveling wave in the liquid layer were modeled and verified with experimental studies. The results indicated that the average drop in the reflected wave amplitude due to liquid loading is −62.5% compared to the empty container, with a percentage of error within 10% for all cases. The localized-time frequency components of the reflected wave were obtained via a Short-Time Fourier Transform technique. Up to 10% reduction (500 KHz) in the central frequency was observed due to the liquid volume increasing. The method discussed herein could be useful for many applications, where some of the liquid’s parameters or the ultrasonic wave behavior in the liquid need to be assessed.


Author(s):  
Kemining W. Yeh ◽  
Richard S. Muller ◽  
Wei-Kuo Wu ◽  
Jack Washburn

Considerable and continuing interest has been shown in the thin film transducer fabrication for surface acoustic waves (SAW) in the past few years. Due to the high degree of miniaturization, compatibility with silicon integrated circuit technology, simplicity and ease of design, this new technology has played an important role in the design of new devices for communications and signal processing. Among the commonly used piezoelectric thin films, ZnO generally yields superior electromechanical properties and is expected to play a leading role in the development of SAW devices.


1998 ◽  
Vol 77 (5) ◽  
pp. 1195-1202
Author(s):  
Andreas Knabchen Yehoshua, B. Levinson, Ora

2014 ◽  
Author(s):  
Jean-Charles Beugnot ◽  
Sylvie Lebrun ◽  
Gilles Pauliat ◽  
Vincent Laude ◽  
Thibaut Sylvestre

2000 ◽  
Vol 284-288 ◽  
pp. 1732-1733
Author(s):  
Irina L Drichko ◽  
Andrey M Diakonov ◽  
Valery V Preobrazenskii ◽  
Ivan Yu Smirnov ◽  
Alexandr I Toropov

Sign in / Sign up

Export Citation Format

Share Document