scholarly journals Phasing Maneuver Analysis from a Low Lunar Orbit to a Near Rectilinear Halo Orbit

Aerospace ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 70
Author(s):  
Giordana Bucchioni ◽  
Mario Innocenti

The paper describes the preliminary design of a phasing trajectory in a cislunar environment, where the third body perturbation is considered non-negligible. The working framework is the one proposed by the ESA’s Heracles mission in which a passive target station is in a Near Rectilinear Halo Orbit and an active vehicle must reach that orbit to start a rendezvous procedure. In this scenario the authors examine three different ways to design such phasing maneuver under the circular restricted three-body problem hypotheses: Lambert/differential correction, Hohmann/differential correction and optimization. The three approaches are compared in terms of ΔV consumption, accuracy and time of flight. The selected solution is also validated under the more accurate restricted elliptic three-body problem hypothesis.

1983 ◽  
Vol 74 ◽  
pp. 317-323
Author(s):  
Magda Delva

AbstractIn the elliptic restricted three body problem an invariant relation between the velocity square of the third body and its potential is studied for long time intervals as well as for different values of the eccentricity. This relation, corresponding to the Jacobian integral in the circular problem, contains an integral expression which can be estimated if one assumes that the potential of the third body remains finite. Then upper and lower boundaries for the equipotential curves can be derived. For large eccentricities or long time intervals the upper boundary increases, while the lower decreases, which can be interpreted as shrinking respectively growing zero velocity curves around the primaries.


BIBECHANA ◽  
2014 ◽  
Vol 12 ◽  
pp. 53-58
Author(s):  
R. R. Thapa

In this paper the joint effect of source of radiation and triaxial rigid body has been studied. The energy of Sitnikov's restricted three body problem when primaries are sources of radiation and energy of Sitnikov's restricted problem of three bodies when primaries are triaxial rigid bodies have been studied to calculate the joint effect. Equation of motion of the third body of infitesimal mass, if primaries are sources of radiation and triaxial rigid bodies,  are calculated.    DOI: http://dx.doi.org/10.3126/bibechana.v12i0.11707BIBECHANA 12 (2015) 53-58


1994 ◽  
Vol 04 (04) ◽  
pp. 865-884 ◽  
Author(s):  
PAU ATELA ◽  
ROBERT I. McLACHLAN

We study the global bifurcation diagram of the two-parameter family of ODE’s that govern the charged isosceles three-body problem. (The classic isosceles three-body problem and the anisotropic Kepler problem (two bodies) are included in the same family.) There are two major sources of periodic orbits. On the one hand the “Kepler” orbit, a stable orbit exhibiting the generic bifurcations as the multiplier crosses rational values. This orbit turns out to be the continuation of the classical circular Kepler orbit. On the other extreme we have the collision-ejection orbit which exhibits an “infinite-furcation.” Up to a limiting value of the parameter we have finitely many periodic orbits (for each fixed numerator in the rotation number), passed this value there is a sudden birth of an infinite number of them. We find that these two bifurcations are remarkably connected forming the main “skeleton” of the global bifurcation diagram. We conjecture that this type of global connection must be present in related problems such as the classic isosceles three-body problem and the anisotropic Kepler problem.


BIBECHANA ◽  
2014 ◽  
Vol 11 ◽  
pp. 149-156
Author(s):  
RR Thapa

The Sitnikov's problem is a special case of restricted three body problem if the primaries are of equal masses (m1 = m2 = 1/2) moving in circular orbits under Newtonian force of attraction and the third body of mass m3 moves along the line perpendicular to plane of motion of primaries. Here oblate spheroid primaries are taken. The solution of the Sitnikov's circular restricted three body problem has been checked when the primaries are oblate spheroid. We observed that solution is depended on oblate parameter A of the primaries and independent variable τ = ηt. For this the stability of non-trivial solutions with the characteristic equation is studied. The general equation of motion of the infinitesimal mass under mutual gravitational field of two oblate primaries are seen at equilibrium points. Then the stability of infinitesimal third body m3 has been calculated. DOI: http://dx.doi.org/10.3126/bibechana.v11i0.10395 BIBECHANA 11(1) (2014) 149-156


1966 ◽  
Vol 25 ◽  
pp. 170-175
Author(s):  
A. Deprit

A canonical transformation of variables is introduced in the plane restricted three-body problem which gives the Hamiltonian in the form of a power series with normalized second order terms. Then a generating function is constructed, step by step, that permits the definition of new action and angle variables, such that the Hamiltonian is independent of the angle variables. This procedure has been done explicitly up to the third order terms.


Sign in / Sign up

Export Citation Format

Share Document