scholarly journals A Parametric Blade Design Method for High-Speed Axial Compressor

Aerospace ◽  
2021 ◽  
Vol 8 (9) ◽  
pp. 271
Author(s):  
Hengtao Shi

The blade geometry design method is an important tool to design high performance axial compressors, expected to have large design space while limiting the quantity of design variables to a suitable level for usability. However, the large design space tends to increase the quantity of the design variables. To solve this problem, this paper utilizes the normalization and subsection techniques to develop a geometry design method featuring flexibility and local adjustability with limited design variables for usability. Firstly, the blade geometry parameters are defined by using the normalization technique. Then, the normalized camber angle f1(x) and thickness f2(x) functions are proposed with subsection techniques used to improve the design flexibility. The setting of adjustable coefficients acquires the local adjustability of blade geometry. Considering the usability, most of the design parameters have clear, intuitive meanings to make the method easy to use. To test this developed geometry design method, it is applied in the design of a transonic, two flow-path axial fan component for an aero engine. Numerical simulations indicate that the designed transonic axial fan system achieves good efficiency above 0.90 for the entire main-flow characteristic and above 0.865 for the bypass flow characteristic, while possessing a sufficiently stable operation range. This indicates that the developed design method has a large design space for containing the good performance compressor blade of different inflow Mach numbers, which is a useful platform for axial-flow compressor blade design.

Author(s):  
Philipp Amtsfeld ◽  
Michael Lockan ◽  
Dieter Bestle ◽  
Marcus Meyer

State-of-the-art aerodynamic blade design processes mainly consist of two phases: optimal design of 2D blade sections and then stacking them optimally along a three-dimensional stacking line. Such a quasi-3D approach, however, misses the potential of finding optimal blade designs especially in the presence of strong 3D flow effects. Therefore, in this paper a blade optimization process is demonstrated which uses an integral 3D blade model and 3D CFD analysis to account for three-dimensional flow features. Special emphasis is put on shortening design iterations and reducing design costs in order to obtain a rapid automatic optimization process for fully 3D aerodynamic turbine blade design which can be applied in an early design phase already. The three-dimensional parametric blade model is determined by up to 80 design variables. At first, the most important design parameters are chosen based on a non-linear sensitivity analysis. The objective of the subsequent optimization process is to maximize isentropic efficiency while fulfilling a minimal set of constraints. The CFD model contains both important geometric features like tip gaps and fillets, and cooling and leakage flows to sufficiently represent real flow conditions. Two acceleration strategies are used to cut down the turn-around time from weeks to days. Firstly, the aerodynamic multi-stage design evaluation is significantly accelerated with a GPU-based RANS solver running on a multi-GPU workstation. Secondly, a response surface method is used to reduce the number of expensive function evaluations during the optimization process. The feasibility is demonstrated by an application to a blade which is a part of a research rig similar to the high pressure turbine of a small civil jet engine. The proposed approach enables an automatic aerodynamic design of this 3D blade on a single workstation within few days.


2005 ◽  
Author(s):  
Jing Wang ◽  
Jianbing Wang ◽  
Liuyang Guo ◽  
Suili Wei ◽  
Dayong Hu

The heat transfer and fluid flow characteristics of airside plate fins of the condenser coil of a gravity-assisted heat pipe are numerically predicted. Based on these CFD computations, the optimization of the airside structure of the heat pipe is carried out by studying the influence of different geometry design variables on a combined heat exchanger evaluation function K, which can be changed by an engineer according to his application experience. In this work, one hundred of DOE’s points are sampled across the design space of the heat pipe based on the Latin Hypercube method. The Least Squares Fitting method is used to fit these sampled points to the RSM of the design space. The Mixed Integer Optimization Algorithm is used to explore the maximum specially-defined K on the Response Surface; and the corresponding optimal size and shape of the heat pipe are finally obtained. The optimization procedure is performed automatically by employing the optimizer-Optimus, grid generator-Gambit, and CFD solver-Fluent.


2011 ◽  
Vol 133 (2) ◽  
Author(s):  
XinJiang Lu ◽  
Han-Xiong Li

In real-world applications, a nominal model is often used to approximate the design of an industrial system. This approximation could make the traditional design method less effective due to the existence of model uncertainty. In this paper, a novel stability-based approach is proposed to design the system ensuring robust stability under model uncertainty. First, the design variables and their variation bounds are configured to make the system stable. Then, a robust design is developed to incorporate system eigenvalues that are less sensitive to model uncertainty. Finally, the tolerance of the design space will be maximized under given performance constraints. A simulation example is conducted to demonstrate the effectiveness of the proposed robust design method.


Author(s):  
Tomonori Honda ◽  
Erik K. Antonsson

The Method of Imprecision (MOI) is a multi-objective design method that maximizes the overall degree of both design and performance preferences. Sets of design variables are iteratively selected, and the corresponding performances are approximately computed. The designer’s judgment (expressed as preferences) are combined (aggregated) with the customer’s preferences, to determine the overall preference for sets of points in the design space. In addition to degrees of preference for values of the design and performance variables, engineering design problems also typically include uncertainties caused by uncontrolled variations, for example, measuring and fabrication limitations. This paper illustrates the computation of expected preference for cases where the uncertainties are uncorrelated, and also where the uncertainties are correlated. The result is a “best” set of design variable values for engineering problems, where the overall aggregated preference is maximized. As is illustrated by the examples shown here, where both preferences and uncontrolled variations are present, the presence of uncertainties can have an important effect on the choice of the overall best set of design variable values.


Author(s):  
Zhen Chen ◽  
Ming Zeng

Design of pure rolling line gear mechanisms for an arbitrary angle intersecting shafts was presented in this article. Based on the active design method of meshing line function for orthogonal shafts, three meshing types of conjugated tooth surfaces for an arbitrary angle intersecting shafts were discussed, including the parametric equations of different generatrix circles, the mathematical models of tooth surfaces, and central curves to be constructed, respectively. The validity of the active designed meshing line function was verified according to meshing equations, and the theoretical sliding rations were analyzed to prove pure rolling meshing. Then basic design parameters of pure rolling line gear mechanisms for the geometry design were determined, and the main structural parameters were obtained therefrom. Lastly, three groups of numerical examples were proposed according to mathematical models. Resin samples of line gears were processed by rapid prototyping technology and the kinematic performance of the pure rolling line gear mechanisms were validated. This paper laid the foundation of geometry and parameter design for pure rolling line gear mechanisms for an arbitrary angle intersecting shafts.


Author(s):  
Ioannis Goulos ◽  
Tomasz Stankowski ◽  
John Otter ◽  
David MacManus ◽  
Nicholas Grech ◽  
...  

This paper presents the development of an integrated approach which targets the aerodynamic design of separate-jet exhaust systems for future gas-turbine aero-engines. The proposed framework comprises a series of fundamental modeling theories which are applicable to engine performance simulation, parametric geometry definition, viscous/compressible flow solution, and design space exploration (DSE). A mathematical method has been developed based on class-shape transformation (CST) functions for the geometric design of axisymmetric engines with separate-jet exhausts. Design is carried out based on a set of standard nozzle design parameters along with the flow capacities established from zero-dimensional (0D) cycle analysis. The developed approach has been coupled with an automatic mesh generation and a Reynolds averaged Navier–Stokes (RANS) flow-field solution method, thus forming a complete aerodynamic design tool for separate-jet exhaust systems. The employed aerodynamic method has initially been validated against experimental measurements conducted on a small-scale turbine powered simulator (TPS) nacelle. The developed tool has been subsequently coupled with a comprehensive DSE method based on Latin-hypercube sampling. The overall framework has been deployed to investigate the design space of two civil aero-engines with separate-jet exhausts, representative of current and future architectures, respectively. The inter-relationship between the exhaust systems' thrust and discharge coefficients has been thoroughly quantified. The dominant design variables that affect the aerodynamic performance of both investigated exhaust systems have been determined. A comparative evaluation has been carried out between the optimum exhaust design subdomains established for each engine. The proposed method enables the aerodynamic design of separate-jet exhaust systems for a designated engine cycle, using only a limited set of intuitive design variables. Furthermore, it enables the quantification and correlation of the aerodynamic behavior of separate-jet exhaust systems for designated civil aero-engine architectures. Therefore, it constitutes an enabling technology toward the identification of the fundamental aerodynamic mechanisms that govern the exhaust system performance for a user-specified engine cycle.


Author(s):  
Massimo Masi ◽  
Andrea Lazzaretto

Abstract This paper presents a simple but complete design method to obtain arbitrary vortex design tube-axial fans starting from fixed size and rotational speed. The method couples the preliminary design method previously suggested by the authors ago with an original revised version of well-known blade design methods taken from the literature. The aim of this work is to verify the effectiveness of the method in obtaining high efficiency industrial fans. To this end, the method has been applied to a 315mm rotor-only tube-axial fan having the same size and rotational speed, and a slightly higher flow rate coefficient, as another prototype previously designed by the authors, which was demonstrated experimentally to noticeably increase the pressure coefficient of an actual 560mm industrial fan. In contrast, no constraints are imposed on the hub-to-tip ratio and pressure coefficient. The new design features a hub-to-tip ratio equal to 0.28 and radially stacked blades with aerodynamic load distribution corresponding to a roughly constant swirl at rotor exit. The ISO-5801 experimental tests showed a fan efficiency equal to 0.68, which is 6% higher than that of the previous prototype. The pressure coefficient is lower, but still 12% higher than that of the benchmark 560mm industrial fan.


Author(s):  
Gino Angelini ◽  
Alessandro Corsini ◽  
Giovanni Delibra ◽  
Lorenzo Tieghi

Since the 1960s, turbomachinery design has mainly been based on similarity theory and empirical correlations derived from experimental data and manufacturing experience. Over the years, this knowledge was consolidated and summarized by parameters such as specific speed and diameters that represent the flow features on the meridional plane, hiding however the direct correlations between all the actual design parameters (e.g., blade number or hub-to-tip ratio). Today a series of statistical tools developed for big data analysis sheds new light on correlations among turbomachinery design and performance parameters. In the following article we explore a dataset of over 10,000 axial fans by means of principal component analysis and projection to latent structures. The aim is to find correlations between design and performance features and comment on the capabilities of this approach to give new insights on the design space of axial fans.


Author(s):  
Massimo Masi ◽  
Andrea Lazzaretto

This paper presents a simple but complete design method to obtain arbitrary vortex design tube-axial fans starting from fixed size and rotational speed. The method couples the preliminary design method previously suggested by the authors with an original revised version of well-known blade design methods taken from the literature. The aim of this work is to verify the effectiveness of the method in obtaining high-efficiency industrial fans. To this end, the method has been applied to a 315 mm rotor-only tube-axial fan having the same size and rotational speed, and a slightly higher flow rate coefficient, as another prototype previously designed by the authors, which was demonstrated experimentally to noticeably increase the pressure coefficient of an actual 560 mm industrial fan. In contrast, no constraints are imposed on the hub-to-tip ratio and pressure coefficient. The new design features a hub-to-tip ratio equal to 0.28 and radially stacked blades with aerodynamic load distribution corresponding to a roughly constant swirl at rotor exit. The ISO-5801 experimental tests showed fan efficiency equal to 0.68, which is 6% higher than that of the previous prototype. The pressure coefficient is lower, but still 12% higher than that of the benchmark 560 mm industrial fan.


Sign in / Sign up

Export Citation Format

Share Document