scholarly journals Redistribution of Energy during Interaction of a Shock Wave with a Temperature Layered Plasma Region at Hypersonic Speeds

Aerospace ◽  
2021 ◽  
Vol 8 (11) ◽  
pp. 326
Author(s):  
O. A. Azarova ◽  
T. A. Lapushkina ◽  
K. V. Krasnobaev ◽  
O. V. Kravchenko

The paper is devoted to the problem of the interaction between a shock wave and a thermally stratified energy source for the purpose of supersonic/hypersonic flow control realization. The effect of the thermally stratified energy source on a shock wave with the Mach number in the range of 6–12 is researched numerically based on the Navier-Stokes system of equations. Redistribution of specific internal energy and volume density of kinetic energy behind the wave front is investigated. Multiple manifestations of the Richtmyer-Meshkov instability has been obtained which has caused the blurring and disappearance of shock wave and contact discontinuity fronts in density fields. A study of the efficiency of using a stratified energy source instead of a homogeneous one with the same value of the full energy is carried out. The agreement with the available experimental data for the shock wave Mach number 6 has been obtained.

2020 ◽  
pp. 45-51
Author(s):  
Pavel Timofeev ◽  
◽  
Vladimir Panchenko ◽  
Sergey Kharchyk ◽  
◽  
...  

This study presents flow simulation over the reentry capsule at supersonic and hypersonic speeds. Numerical algorithms solve for the CFD method, which is produced using help ANSYS Fluent 19.2. The using GPU core to get a solution faster. The main purpose – flow simulation and numerical analysis reentry capsule; understand the behavior of supersonic and hypersonic flow and its effect on the reentry capsule; compare temperature results for the range Mach numbers equals 2–6. This study showed results on velocity counters, on temperature counters and vector of velocity for range Mach numbers equals 2–6. This study demonstrates the importance of understanding the effects of shock waves and illustrates how the shock wave changes as the Mach number increases. For every solves, the mesh had adapted for pressure gradient and velocity gradient to get the exact solution. As a result of the obtained solution, it is found that a curved shock wave appears in front of the reentry capsule. The central part of which is a forward shock. An angular expansion process is observed, which is a modified picture of the Prandtl- Mayer flow that occurs in a supersonic flow near the sharp edge of the expanding region. It is revealed that with an increase in the Mach number, the shock wave approaches the bottom of the reentry capsule, and there is also a slope of the shock to the flow direction, with an increase in the Mach number. The relevance and significance of this problem for the design of new and modernization of old reentry capsules.


2011 ◽  
Vol 21 (01) ◽  
pp. 7-27 ◽  
Author(s):  
EDUARD FEIREISL

We study the singular limit of the compressible Navier–Stokes system in the whole space ℝ3, where the Mach number and Froude number are proportional to a small parameter ε → 0. The central issue is the local decay of the acoustic energy proved by means of the RAGE theorem. The result is quite general and the proposed approach can be applied to a large variety of problems that concern propagation of acoustic waves in compressible fluids. In particular, the method can be used for showing stability of various numerical schemes based on the so-called hybrid methods.


Author(s):  
Omid Abouali ◽  
Mohammad M. Alishahi ◽  
Homayoon Emdad ◽  
Goodarz Ahmadi

A 3-D Thin Layer Navier-Stokes (TLNS) code for solving viscous supersonic flows is developed. The new code uses several numerical algorithms for space and time discretization together with appropriate turbulence modeling. Roe’s method is used for discretizing the convective terms and the central differencing scheme is employed for the viscous terms. An explicit time marching technique and a finite volume space discretization are used. The developed computational model can handle both laminar and turbulent flows. The Baldwin-Lomax model and Degani-Schiff modifications are used for turbulence modeling. The computational model is applied to a hypersonic laminar flow at Mach 7.95 around a cone at different incidence angles. The circumferential pressure distribution is compared with the experimental data. The cross-sectional Mach number contours are also presented. It is shown that in addition to the outer shock, a cross-flow shock wave is also present in the flow field. The cases of supersonic turbulent flows with Mach number 3 around a tangent-ogive with incidence angles of 6° and a secant-ogive with incidence angles of 10° are also studied. The circumferential pressure distributions are compared with the experimental data and the Euler code results and good agreement is obtained. The cross-sectional Mach number contours are also presented. It is shown that in this case also in addition to the outer shock, a cross-flow shock wave is also present at the incidence angle of 10°.


2012 ◽  
Vol 44 (3) ◽  
pp. 1760-1807 ◽  
Author(s):  
C. David Levermore ◽  
Weiran Sun ◽  
Konstantina Trivisa

Author(s):  
Keiichiro Fujimoto ◽  
Kozo Fujii

Compressible flow around the basic reusable rocket configurations are numerically simulated by Navier-Stokes computations. The study started with the simulations of Apollo configuration to validate the simulation method by the comparison of the aerodynamic data with NASA’s experiments, and the capability of CFD estimation are discussed. Computed aerodynamic coefficients for the Apollo agreed well with the experiments at subsonic to supersonic flow regime for whole angle of attack range. Then, the effects of the configuration parameters on the aerodynamic characteristics are numerically investigated and clarified in detail. It turns out that the aerodynamic characteristicsismainlyinfluenced by the separating position of the flow, shock wave on the surface and the pressure level behind the body. Large shoulder radius causes the strong Mach number dependency of the aerodynamic characteristics, and large fineness ratio strongly influences to the (CL)max.


2012 ◽  
Vol 14 (03) ◽  
pp. 1250022 ◽  
Author(s):  
RAPHAËL DANCHIN ◽  
XIAN LIAO

This work is devoted to the well-posedness issue for the low Mach number limit system obtained from the full compressible Navier–Stokes system, in the whole space ℝd with d ≥ 2. In the case where the initial temperature (or density) is close to a positive constant, we establish the local existence and uniqueness of a solution in critical homogeneous Besov spaces of type [Formula: see text]. If, in addition, the initial velocity is small then we show that the solution exists for all positive time. In the fully nonhomogeneous case, we establish the local well-posedness in nonhomogeneous Besov spaces [Formula: see text] (still with critical regularity) for arbitrarily large data with positive initial temperature. Our analysis strongly relies on the use of a modified divergence-free velocity which allows to reduce the system to a nonlinear coupling between a parabolic equation and some evolutionary Stokes system. As in the recent work by Abidi and Paicu [Existence globale pour un fluide inhomogène, Ann. Inst. Fourier 57(3) (2007) 883–917]. Concerning the density-dependent incompressible Navier–Stokes equations, the Lebesgue exponents of the Besov spaces for the temperature and the (modified) velocity, need not be the same. This enables us to consider initial data in Besov spaces with a negative index of regularity.


Sign in / Sign up

Export Citation Format

Share Document