scholarly journals A Substructure Synthesis Method with Nonlinear ROM Including Geometric Nonlinearities

Aerospace ◽  
2021 ◽  
Vol 8 (11) ◽  
pp. 344
Author(s):  
Chao An ◽  
Yang Meng ◽  
Changchuan Xie ◽  
Chao Yang

Large flexible aircraft are often accompanied by large deformations during flight leading to obvious geometric nonlinearities in response. Geometric nonlinear dynamic response simulations based on full-order models often carry unbearable computing burden. Meanwhile, geometric nonlinearities are caused by large flexible wings in most cases and the deformation of fuselages is small. Analyzing the whole aircraft as a nonlinear structure will greatly increase the analysis complexity and cost. The analysis of complicated aircraft structures can be more efficient and simplified if subcomponents can be divided and treated. This paper aims to develop a hybrid interface substructure synthesis method by expanding the nonlinear reduced-order model (ROM) with the implicit condensation and expansion (ICE) approach, to estimate the dynamic transient response for aircraft structures including geometric nonlinearities. A small number of linear modes are used to construct a nonlinear ROM for substructures with large deformation, and linear substructures with small deformation can also be assembled comprehensively. The method proposed is compatible with finite element method (FEM), allowing for realistic engineering model analysis. Numerical examples with large flexible aircraft models are calculated to validate the accuracy and efficiency of this method contrasted with nonlinear FEM.

2008 ◽  
Vol 15 (1) ◽  
pp. 51-60 ◽  
Author(s):  
C.Q. Liu

In this paper, an improved FRF-based substructure synthesis method combined with power flow analysis is presented and is used for performing a vehicle axle noise analysis. The major transfer paths of axle noise transmitted from chassis to vehicle body are identified and ranked based on power flows transmitted through bushings between the chassis and body. To calculate the power flows, it is necessary to know the reaction forces and the vibrations at the bushing locations on the body side. To this end, the body is represented in terms of experimentally derived frequency response functions (FRF's) at the bushing locations, and the FRF's are coupled with the FEA model of the chassis for performing a total system dynamic analysis. This paper also describes how the FRF's of the vehicle body and the frequency dependent stiffness data of the bushings can be combined together with a simple formulation to better represent the dynamic characteristics of a full vehicle. A classical example is used to illustrates the concept of the method, and the method is then applied to a vehicle axle noise analysis with detailed procedure. The theoretical predictions are compared with experimentally measured results. Good correlation has been obtained.


1994 ◽  
Vol 60 (569) ◽  
pp. 24-29 ◽  
Author(s):  
Jun'ichi Hino ◽  
Naoya Sumitani ◽  
Toshio Yoshimura ◽  
Takamichi Sakai

1998 ◽  
Vol 122 (1) ◽  
pp. 2-6 ◽  
Author(s):  
C. Morales

This paper is concerned with the convergence characteristics and application of the Rayleigh-Ritz based substructure synthesis method to structures for which the use of a kinematical procedure taking into account all the compatibility conditions, is not possible. It is demonstrated that the synthesis in this case is characterized by the fact that the mass and stiffness matrices have the embedding property. Consequently, the estimated eigenvalues comply with the inclusion principle, which in turn can be utilized to prove convergence of the approximate solution. The method is applied to a frame and is compared with the finite element method. [S0739-3717(00)00201-4]


Sign in / Sign up

Export Citation Format

Share Document