scholarly journals Structural Batteries for Aeronautic Applications—State of the Art, Research Gaps and Technology Development Needs

Aerospace ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 7
Author(s):  
Helmut Kühnelt ◽  
Alexander Beutl ◽  
Francesco Mastropierro ◽  
Frederic Laurin ◽  
Sebastian Willrodt ◽  
...  

Radical innovations for all aircraft systems and subsystems are needed for realizing future carbon-neutral aircraft, with hybrid-electric aircraft due to be delivered after 2035, initially in the regional aircraft segment of the industry. Electrical energy storage is one key element here, demanding safe, energy-dense, lightweight technologies. Combining load-bearing with energy storage capabilities to create multifunctional structural batteries is a promising way to minimize the detrimental impact of battery weight on the aircraft. However, despite the various concepts developed in recent years, their viability has been demonstrated mostly at the material or coupon level, leaving many open questions concerning their applicability to structural elements of a relevant size for implementation into the airframe. This review aims at providing an overview of recent approaches for structural batteries, assessing their multifunctional performance, and identifying gaps in technology development toward their introduction for commercial aeronautic applications. The main areas where substantial progress needs to be achieved are materials, for better energy storage capabilities; structural integration and aircraft design, for optimizing the mechanical-electrical performance and lifetime; aeronautically compatible manufacturing techniques; and the testing and monitoring of multifunctional structures. Finally, structural batteries will introduce novel aspects to the certification framework.

2020 ◽  
Vol 23 (3) ◽  
pp. 213-220
Author(s):  
R Prakash ◽  
B Meenakshipriya ◽  
S Vijayan ◽  
R Kumaravelan

Thermal and Electrical performance of solar PV/T hybrid water heating system using salt mixture phase change materials in storage tank is analyzed in this study. Compare to all conventional type heaters, the solar PV/T hybrid module collector has ability to produces both electrical energy from PV module and utilizes incident solar energy to heat the water. The sheet and tube type absorber is used to heat up the tube which is attached at the back side of PV module and transfer the heat to flowing water and the electrical energy is tested by connecting the DC load on the PV terminals under glazed and unglazed modes respectively. To enhance the thermal performance, energy storage medium is used as phase change materials at good proportion in the tank. The thermo physical properties of PCM are analyzed by Differential Scanning Calorimetry. This experimental testing is conducted from 8.00 to 17.00 IST in various sunny days and results are compared for glazed and unglazed conditions. The results shows that the average water temperature easily reaches 38-45°C and the final temperature of water never dropped below 34°, the temperature of PCM is 45.6oC, which is 5oC higher than outlet. The amount of heat stored using PCM in tank is 16.86% greater than no-PCM in the tank for constant 0.01 kg/s mass flow rate. The daily average electrical efficiency is 6.4% under glazed mode and 8.8% under unglazed conditions.


Author(s):  
Cary Laird ◽  
Donald Docimo ◽  
Christopher T. Aksland ◽  
Andrew G. Alleyne

Abstract Hybrid energy storage systems are a popular alternative to traditional electrical energy storage mechanisms for electric vehicles. Consisting of multiple heterogeneous storage elements, these systems require thoughtful design and control techniques to ensure adequate electrical performance and minimal added weight. In this work, a graph-based design optimization framework is extended to facilitate design and control optimization of a battery-ultracapacitor hybrid energy storage system. For a given high ramp rate load profile, a hybrid electrical energy storage system consisting of battery and ultracapacitor packs with proportional-integral controllers is considered. A multi-objective optimization problem is formulated to simultaneously optimize sizing and performance of the system by minimizing mass and deviations from ideal controller performance. This optimization is achieved by adjusting the size of the energy storage system and parameters of the feedback controller. A Pareto curve is provided, which exhibits the tradeoffs between sizing and performance of the hybrid energy storage system. Dynamic simulation results demonstrate optimized designs outperform initial designs in both sizing and electrical performance objectives. The design and control optimization approach is shown to outperform a similar sizing optimization approach.


2021 ◽  
Author(s):  
Mirai Ohara ◽  
A. Shahul Hameed ◽  
Kei Kubota ◽  
Akihiro Katogi ◽  
Kuniko Chihara ◽  
...  

K-ion batteries (KIBs) are promising for large-scale electrical energy storage owing to the abundant resources and the electrochemical specificity of potassium. Among the positive electrode materials for KIBs, vanadium-based polyanionic...


Sign in / Sign up

Export Citation Format

Share Document